數位機會於行動式擴增實境學習成效之探討
No Thumbnail Available
Date
2015
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
本研究假設行動式擴增實境學習可以減低數位機會程度對於數位學習的影響。首先透過數位機會指標了解國小高年級學生數位機會程度的現況,並藉由行動式擴增實境學習之活動,探討學生在進行行動式擴增實境學習活動時,數位機會程度差異對學生學習成效的影響情形。研究以與日常生活緊密關切的碳足跡為主題進行教學活動。研究對象募集新北市國民小學五、六年級學生計四十四人,在進行過行動擴增實境學習活動後,再實施問卷調查,以了解學生在此種行動式擴增實境學習的方式之下,不同數位機會的學生在學習成就、學習經驗上是否有所差異以及差異為何。研究結果發現在數位機會程度表現上,六年級的數位機會程度高於五年級生,顯見確實有數位機會程度上的差異。而所有受試學生在運用行動式擴增實境進行學習活動後,皆有效地提升了碳足跡單元的學習成就。並且,不同整體數位機會程度之學生,在學習成就方面並不存在顯著差異,顯示不同數位機會程度的學生在透過行動式擴增實境進行碳足跡學習活動,皆能獲得良好的學習成就。而在學習經驗上高數位機會程度的學生表現優於低數位機會程度的學生,顯示在學習經驗上仍會因為學生的數位程度而造成影響。整體結論可提供教育工作者未來在考量學生數位落差以及運用行動式擴增實境進行教學時之參考。
This paper aims to investigate the current situation of digital opportunity of 5th- and 6th-grade elementary school students and to examine the learning effect of mobile augmented reality on the students in terms of their personal digital opportunity. Carbon footprint was selected as the topic in accordance with the instruction objective. The research subjects were forty-four (44) 5th- and 6th-grade students in New Taipei city, Taiwan. Carbon footprint was employed as the subject matter. A Personal Digital Opportunity Questionnaire and a subject-matter proficiency test were conducted before the experiment. After receiving the mobile augmented reality learning activity, a parallel proficiency test and a Learning Experience Questionnaire were given for evaluating their progress on subject-matter knowledge and investigating differences on learning experiences among students with various digital opportunities. The results show that 6th-grade students outperformed 5th-grade students with regards to digital opportunity, which clearly indicates differences between these two grades of students existed. Overall, all students have significant improvement on subject-matter knowledge. However, no significant differences were found between students with high and low digital opportunities. It implies that mobile augmented reality could greatly enhance the academic performance regardless of the levels of digital opportunity. With regard to learning experience, students with high digital opportunity outperformed those with low digital opportunity, which signals that learning experience was influenced by digital opportunity. These results could provide pedagogical implications for designing adaptive mobile augmented reality instruction.
This paper aims to investigate the current situation of digital opportunity of 5th- and 6th-grade elementary school students and to examine the learning effect of mobile augmented reality on the students in terms of their personal digital opportunity. Carbon footprint was selected as the topic in accordance with the instruction objective. The research subjects were forty-four (44) 5th- and 6th-grade students in New Taipei city, Taiwan. Carbon footprint was employed as the subject matter. A Personal Digital Opportunity Questionnaire and a subject-matter proficiency test were conducted before the experiment. After receiving the mobile augmented reality learning activity, a parallel proficiency test and a Learning Experience Questionnaire were given for evaluating their progress on subject-matter knowledge and investigating differences on learning experiences among students with various digital opportunities. The results show that 6th-grade students outperformed 5th-grade students with regards to digital opportunity, which clearly indicates differences between these two grades of students existed. Overall, all students have significant improvement on subject-matter knowledge. However, no significant differences were found between students with high and low digital opportunities. It implies that mobile augmented reality could greatly enhance the academic performance regardless of the levels of digital opportunity. With regard to learning experience, students with high digital opportunity outperformed those with low digital opportunity, which signals that learning experience was influenced by digital opportunity. These results could provide pedagogical implications for designing adaptive mobile augmented reality instruction.
Description
Keywords
擴增實境, 數位機會, 數位落差, 碳足跡, augmented reality, digital opportunity, digital divide, carbon footprint