基於神經網路的火勢擴散視覺化分析

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

野火是世界範圍內普遍存在的現象,對環境、生物的多樣性產生重大影響,並威脅人類的健康和財產安全。對於野火管理員、消防員、研究人員來說,了解野火的蔓延行為非常重要,因為這可以幫助他們獲取野火蔓延的實時關鍵信息,幫助 他們進行野火風險評估,並決定如何配資源用於野火控制和撲滅。野火蔓延是一種複雜的物理現象,很多野火蔓延模擬方法都是基於物理學的方法,這種方法不方便使用者理解野火的蔓延行為。在這項工作中,我們提出了一個野火蔓延預測的可視化分析系統,該系統基於經過深度訓練的卷積逆向圖形網絡模型(DCIGN),此模型可以用於野火蔓延預測。基於神經網絡模型的可解釋性和可解釋性,此模型還可以幫助我們模擬和揭示野火蔓延的複雜行為。 我們的可視化分析系統提供了一些視圖來協助野火管理人員、消防員、研究人 員分析野火蔓延的特徵。實例視圖可以通過選擇輸入地形和天氣參數來可視化野火 蔓延預測的區域。該系統還利用深度Shapely additive explanations(SHAP)解釋工具提供多種輸入參數敏感性分析視圖。這些敏感性分析視圖包括所有野火預測區域不同空間區域的全局平均敏感性和針對用戶選擇的特定區域進行的局部參數敏感性分析。在局部參數敏感性分析基礎上,有時需要了解多個天氣參數如何共同影響野火蔓延的路徑我們的系統包含的參數相關性分析可以幫助用戶了解所選的天氣參數如何影響野火的蔓延。 Dropout層是解決模型訓練時過擬合的有效手段,同時會導致模型預測結果的不確定性,系統提供的不確定性視圖可以對野火預測的不確定性進行分析。此外,我們的可視化系統提供了參數優化視圖,當從地圖上選擇一個區域時,該視圖可以幫助用戶分析出可能導致野火蔓延到該區域的天氣參數。該視圖可用於分析可能導致野火蔓延到地圖上選定區域的天氣參數,這在實際野火分析中具有重要意義。
Wildfires are a widespread phenomenon across the world, with significant impacts on the environment, biodiversity and threats to human health and property safety. Understanding the spreading behavior of wildfires is important for wildfire managers, firefighters, and researchers. This understanding can help them obtain real-time crit- ical information, conduct wildfire risk assessments, and make decisions about where to allocate resources for wildfire control and suppression. However, the spread of wildfires is a complex physical phenomenon, and there are many physics-based wild- fire spread simulation models. These models can be computationally expensive and difficult to use, which makes it inconvenient to understand the spread behavior of wildfires.In this work, we propose a visual analysis system for wildfire spread predic- tion. This system is based on a trained deep convolutional inverse graphics network (DCIGN) model for wildfire spread prediction. The interpretability and explainabil- ity of neural network-based models allow us to reveal the complex behavior of wildfire spread simulation. The visual analysis system provides a number of views to assist wildfire managers, firefighters, and researchers in analyzing the characteristics of wildfire spread. The instance view visualizes the wildfire spread prediction simulation output by choosing the input terrain and weather parameters. The system also provides a variety of input parameter sensitivity analysis views by utilizing the deep Shapely additive explanations(SHAP) tool. These sensitivity analysis views include the global average sensitivity of different spatial regions across all the wildfire prediction areas and local parameter sensitivity analysis for a specific area selected by the users. Furthermore, it is imperative to comprehend how multiple weather parameters jointly influence the trajectory of wildfire spread. The system also includes a parameter correlation analysis to help users understand how the selected weather parameters affect wildfire spread.The dropout layer is an effective means to solve overfitting during model training, but it can also lead to uncertainty in the model prediction results. We address this by providing an uncertainty view that allows users to analyze the uncertainty of wildfire prediction. Our visualization system also provides a parameter optimization view. This view can be used to analyze the weather parameters that could cause wildfires to spread to a selected area on the map. This is of great significance inactual wildfire analysis.

Description

Keywords

野火擴散預測, 深度學習, 視覺化分析, 模型解釋, 參數分析, Wildfire spread prediction, Deep learning, Visual analysis, Model explainability, Parameter analysis

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By