基於 MPC 實現平衡控制的人形機器人騎乘電動機車運動規劃

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

在台灣,機車是人們通勤的主要工具之一。與此同時,隨著人工智慧的快速進步,仿人機器人已經成為未來的趨勢。為了促進仿人機器人的發展,我們進行了研究以探索其可行性。在這項研究中,我們的目標是控制機器人騎機車並通過台灣的駕照考試。為了完成這項任務,我們需要解決騎機車的最基本問題——平衡。在我們的研究中,我們實施了模型預測控制(MPC)來進行自平衡測試。同時,我們將討論兩輪車的建模、MPC優化算法和機器人運動規劃的逆運動學。為了評估可行性,我們還使用了PID控制器進行比較。最後,我們展示了結果,證明選擇MPC作為我們主要方法的優勢。
In Taiwan, scooters are one of the primary tools for people to commute. Simultaneously, with the rapid advancements in artificial intelligence, humanoid robots have already become a trend for the future. To promote the development of humanoid robots, we have undertaken research to explore their feasibility. In this study, we aimed to control a robot to ride a scooter and pass the Taiwanese driving license test. To achieve this task, we needed to solve the most fundamental issue of riding a scooter—balance. In our research, we implemented Model Predictive Control (MPC) to conduct the self-balancing test. Simultaneously, we would discuss about modeling for the two-wheeled vehicle, MPC optimization algorithm and robot motion planning with inverse kinematic. To evaluate feasibility, we also used a PID controller for comparison. Finally, we present the results, demonstrating the advantages of choosing MPC as our primary method.

Description

Keywords

none, Humanoid Robots, Two-wheeled Vehicles, Classical Control, Robot Motion Planning, Neural Network

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By