基於 MPC 實現平衡控制的人形機器人騎乘電動機車運動規劃
No Thumbnail Available
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
在台灣,機車是人們通勤的主要工具之一。與此同時,隨著人工智慧的快速進步,仿人機器人已經成為未來的趨勢。為了促進仿人機器人的發展,我們進行了研究以探索其可行性。在這項研究中,我們的目標是控制機器人騎機車並通過台灣的駕照考試。為了完成這項任務,我們需要解決騎機車的最基本問題——平衡。在我們的研究中,我們實施了模型預測控制(MPC)來進行自平衡測試。同時,我們將討論兩輪車的建模、MPC優化算法和機器人運動規劃的逆運動學。為了評估可行性,我們還使用了PID控制器進行比較。最後,我們展示了結果,證明選擇MPC作為我們主要方法的優勢。
In Taiwan, scooters are one of the primary tools for people to commute. Simultaneously, with the rapid advancements in artificial intelligence, humanoid robots have already become a trend for the future. To promote the development of humanoid robots, we have undertaken research to explore their feasibility. In this study, we aimed to control a robot to ride a scooter and pass the Taiwanese driving license test. To achieve this task, we needed to solve the most fundamental issue of riding a scooter—balance. In our research, we implemented Model Predictive Control (MPC) to conduct the self-balancing test. Simultaneously, we would discuss about modeling for the two-wheeled vehicle, MPC optimization algorithm and robot motion planning with inverse kinematic. To evaluate feasibility, we also used a PID controller for comparison. Finally, we present the results, demonstrating the advantages of choosing MPC as our primary method.
In Taiwan, scooters are one of the primary tools for people to commute. Simultaneously, with the rapid advancements in artificial intelligence, humanoid robots have already become a trend for the future. To promote the development of humanoid robots, we have undertaken research to explore their feasibility. In this study, we aimed to control a robot to ride a scooter and pass the Taiwanese driving license test. To achieve this task, we needed to solve the most fundamental issue of riding a scooter—balance. In our research, we implemented Model Predictive Control (MPC) to conduct the self-balancing test. Simultaneously, we would discuss about modeling for the two-wheeled vehicle, MPC optimization algorithm and robot motion planning with inverse kinematic. To evaluate feasibility, we also used a PID controller for comparison. Finally, we present the results, demonstrating the advantages of choosing MPC as our primary method.
Description
Keywords
none, Humanoid Robots, Two-wheeled Vehicles, Classical Control, Robot Motion Planning, Neural Network