不同負荷下肢複合訓練對肌電訊號與跳躍能力的影響
No Thumbnail Available
Date
2005
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
不同負荷下肢複合訓練對肌電圖訊號與跳躍能力的影響
2005年6月 研究生:蔡宗晏
指導教授:方進隆
摘要
本研究的目的在探討不同負荷下肢複合訓練(先實施重量訓練+ 隨後進行增強式訓練的組合)對於肌肉活化的程度與隨後增強式運動表現的影響。以12名師大乙組排球隊選手為本實驗受試者,平均身高176.8±6.9公分,體重68.7±5.9公斤,年齡20.9±1.4歲,1/2蹲舉最大肌力135.6±18公斤。受試者經過標準化的熱身後,在測力板進行 連續5次屈膝反彈跳(counter movement jump, CMJ),作為基準值, 4分鐘後,受試者依照隨機分派和次序平衡,完成高負荷複合訓練(85%1RM 高強度1/2蹲舉5下+CMJ5下)和中負荷複合訓練(65%1RM 1/2中強度蹲舉5下+ CMJ5下)兩個流程。不同負荷實驗處理的休息間隔時間為10分鐘,而1/2蹲舉和CMJ的休息時間為3分鐘。以Biovision 肌電系統紀錄股直肌、股二頭肌、比目魚肌、腓腸肌肌電訊號,和使用kistler 9287測力板取得平均垂直反作用力、衝量和跳躍高度。並分別以相依樣本t考驗分析不同負荷重量訓練之均方根(root meant square, RMS)肌電,和重複量數單因子變異數分析3次連續5下CMJ過程中,與地面作用期間時的RMS肌電和動力學參數,作為統計分析。獲致以下結果:
1. 高強度重量訓練過程中,股直肌RMS肌電 > 中強度重量訓練(p<.05),但股二頭肌、比目魚肌、腓腸肌並沒有顯著差異(p>.05)。
2. 除了中負荷重量訓練後反覆CMJ股直肌RMS肌電最大值顯著小於基準值外,三個反覆5次CMJ過程中時,各肌群的5次RMS肌電平均值、平均垂直反作用力(1655 ±315.05 vs 1657.86 ±272.73 vs 1665.62 ±231.28)、衝量(577.31±99.74 vs 578.54 ± 109.98 vs 582.58 ± 103.47)和跳躍高度(29.83 ± 3.71 vs 30.02 ± 4.18 vs 30.82 ± 3.95)皆沒有顯著差異(p>.05)。
結論:高負荷重量訓練比中強度重量訓練徵召更多主作用肌運動單位,但肌肉活化的效果並未延續到隨後的增強式運動表現。亦即高負荷複合訓練與中負荷複合訓練對於增強式運動表現和神經肌肉的刺激為中性的,並無提升的效果。
The effect of different loaded complex training using lower limb exercise for the EMG signal and jumping capacity June 2005 Student: Zong-Yan Cai Advisor: Frank Chin-Lung Fang Abstract The purpose of this study was to investigate different loaded complex training (combination of a pre weight training followed by plyometric training ) on the muscle activation level and its effect for subsequent plyometric performance. Twelve National Taiwan Normal University volleyball team players were participated as the subjects of this experiment. Subjects were 176.8±6.9cm in height, 68.7±5.9 in weight,20.9±1.4 years of age,and had 135.6±18kg of maximal muscular strength in half squat. After normalized warming up, subjects were asked to performe 5 bouts continuous counter movement jump (CMJ) on force platform as a baseline. Then 4 minutes later, subjects were randomly assigned and counter balanced to perform 2 procedure of high loaded complex training (85%1RM half squat 5repetion+ 5 CMJ ) and middle loaded complex training (65%1RM half squat 5repetion+ 5 CMJ ). The rest interval between different loaded complex training experiment treatments were 10 minutes, and the CMJ was performed 3 minutes later after the half squat. The EMG signal was recorded from the the rectus femoris, biceps femoris, gastrocenmius, and soleus of the Biovision EMG system. Mean vertical ground reaction force, impulse and jump height were acquired via the kistler 9287 force platform. Paired sample t-test was used to analyze the RMS EMG of the two different intensity weight training, and One way ANOVA repeated measure was used for the RMS EMG and kinetic parameters during the period of contacting with the ground from the process of 3 sets, 5 bouts continuous CMJ for statistic analyzation. The results were obtained as follows: 1. The RMS EMG of the rectus femoris is greater during the process of high intensity weight training than the middle intensity weight training (p<.05), but no significant difference was found of biceps femoris, gastrocenmius, and soleus (p>.05). 2. Except for the maximal RMS EMG of the rectus femoris during the repeated CMJ following middle loaded weight training is significantly lower than the basline, there were no significant difference for any muscle groups of the maen RMS EMG and mean vertical ground reaction force (1655±315.05 vs 1657.86 ±272.73 vs 1665.62 ± 231.28), impulse (577.31±99.74 vs 578.54 ± 109.98 vs 582.58 ± 103.47), jump height (29.83 ± 3.71 vs 30.02 ± 4.18 vs 30.82 ± 3.95) between the 3 sets 5repeated bouts CMJ (p>.05). In conclusion, high intensity weight training recruits more motor units from the primary muscle than middle intensity weight training, but the effect of muscle activation does not last to the subsequent plyometric performance. That is to say that high intensity complex training and middle intensity complex training are neutral to the neuromuscular stimulation, fail to have any enhancement effect.
The effect of different loaded complex training using lower limb exercise for the EMG signal and jumping capacity June 2005 Student: Zong-Yan Cai Advisor: Frank Chin-Lung Fang Abstract The purpose of this study was to investigate different loaded complex training (combination of a pre weight training followed by plyometric training ) on the muscle activation level and its effect for subsequent plyometric performance. Twelve National Taiwan Normal University volleyball team players were participated as the subjects of this experiment. Subjects were 176.8±6.9cm in height, 68.7±5.9 in weight,20.9±1.4 years of age,and had 135.6±18kg of maximal muscular strength in half squat. After normalized warming up, subjects were asked to performe 5 bouts continuous counter movement jump (CMJ) on force platform as a baseline. Then 4 minutes later, subjects were randomly assigned and counter balanced to perform 2 procedure of high loaded complex training (85%1RM half squat 5repetion+ 5 CMJ ) and middle loaded complex training (65%1RM half squat 5repetion+ 5 CMJ ). The rest interval between different loaded complex training experiment treatments were 10 minutes, and the CMJ was performed 3 minutes later after the half squat. The EMG signal was recorded from the the rectus femoris, biceps femoris, gastrocenmius, and soleus of the Biovision EMG system. Mean vertical ground reaction force, impulse and jump height were acquired via the kistler 9287 force platform. Paired sample t-test was used to analyze the RMS EMG of the two different intensity weight training, and One way ANOVA repeated measure was used for the RMS EMG and kinetic parameters during the period of contacting with the ground from the process of 3 sets, 5 bouts continuous CMJ for statistic analyzation. The results were obtained as follows: 1. The RMS EMG of the rectus femoris is greater during the process of high intensity weight training than the middle intensity weight training (p<.05), but no significant difference was found of biceps femoris, gastrocenmius, and soleus (p>.05). 2. Except for the maximal RMS EMG of the rectus femoris during the repeated CMJ following middle loaded weight training is significantly lower than the basline, there were no significant difference for any muscle groups of the maen RMS EMG and mean vertical ground reaction force (1655±315.05 vs 1657.86 ±272.73 vs 1665.62 ± 231.28), impulse (577.31±99.74 vs 578.54 ± 109.98 vs 582.58 ± 103.47), jump height (29.83 ± 3.71 vs 30.02 ± 4.18 vs 30.82 ± 3.95) between the 3 sets 5repeated bouts CMJ (p>.05). In conclusion, high intensity weight training recruits more motor units from the primary muscle than middle intensity weight training, but the effect of muscle activation does not last to the subsequent plyometric performance. That is to say that high intensity complex training and middle intensity complex training are neutral to the neuromuscular stimulation, fail to have any enhancement effect.
Description
Keywords
複合訓練, 均方根肌電, 屈膝反彈跳, complex training, root mean square EMG, counter movement jump