在可程式化系統晶片上之C-Means分群演算法設計

dc.contributor黃文吉zh_TW
dc.contributorWen-Jyi Hwangen_US
dc.contributor.author許智傑zh_TW
dc.contributor.authorChih Chieh Hsuen_US
dc.date.accessioned2019-09-05T11:27:52Z
dc.date.available不公開
dc.date.available2019-09-05T11:27:52Z
dc.date.issued2008
dc.description.abstract本論文提出一個新的c-means演算法硬體架構,在做分群處理與質量中心點的計算皆為管線化的運作,因此可以同時處理多筆訓練向量。我們計算質量中心點的除法器是由查表法、乘法器與位移運作所組成,可以大大的降低硬體複雜度且一個時脈週期即可完成除法的運算。最後我們所提出的架構會在以FPGA為基礎的可程式化系統晶片設計(System On a Programmable Chip,SOPC)之平台上作實際的效能測試,經由數據分析可以發現我們的架構會比軟體有更高的效能。zh_TW
dc.description.abstractA novel hardware architecture for c-means clustering is presented in this paper. Our architecture is fully pipelined for both the partitioning and centroid computation operations so that multiple training vectors can be concurrently processed. A simple divider circuit based on table lookup, multiplication and shift operations is employed for reducing both the area cost and latency for centroid computation. The proposed architecture is used as a hardware accelerator for a softcore NIOS CPU implemented on a FPGA device for physical performance measurement.Numerical results reveal that our design is an effective solution with low hardware complexity and high computation performance for c-means design.en_US
dc.description.sponsorship資訊工程學系zh_TW
dc.identifierGN0695470127
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0695470127%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/106689
dc.language中文
dc.subject可程式化系統晶片zh_TW
dc.subject分群演算法zh_TW
dc.title在可程式化系統晶片上之C-Means分群演算法設計zh_TW
dc.titleSoPC-based C-Means Clustering Algorithm Designen_US

Files

Collections