在可程式化系統晶片上之C-Means分群演算法設計
dc.contributor | 黃文吉 | zh_TW |
dc.contributor | Wen-Jyi Hwang | en_US |
dc.contributor.author | 許智傑 | zh_TW |
dc.contributor.author | Chih Chieh Hsu | en_US |
dc.date.accessioned | 2019-09-05T11:27:52Z | |
dc.date.available | 不公開 | |
dc.date.available | 2019-09-05T11:27:52Z | |
dc.date.issued | 2008 | |
dc.description.abstract | 本論文提出一個新的c-means演算法硬體架構,在做分群處理與質量中心點的計算皆為管線化的運作,因此可以同時處理多筆訓練向量。我們計算質量中心點的除法器是由查表法、乘法器與位移運作所組成,可以大大的降低硬體複雜度且一個時脈週期即可完成除法的運算。最後我們所提出的架構會在以FPGA為基礎的可程式化系統晶片設計(System On a Programmable Chip,SOPC)之平台上作實際的效能測試,經由數據分析可以發現我們的架構會比軟體有更高的效能。 | zh_TW |
dc.description.abstract | A novel hardware architecture for c-means clustering is presented in this paper. Our architecture is fully pipelined for both the partitioning and centroid computation operations so that multiple training vectors can be concurrently processed. A simple divider circuit based on table lookup, multiplication and shift operations is employed for reducing both the area cost and latency for centroid computation. The proposed architecture is used as a hardware accelerator for a softcore NIOS CPU implemented on a FPGA device for physical performance measurement.Numerical results reveal that our design is an effective solution with low hardware complexity and high computation performance for c-means design. | en_US |
dc.description.sponsorship | 資訊工程學系 | zh_TW |
dc.identifier | GN0695470127 | |
dc.identifier.uri | http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0695470127%22.&%22.id.& | |
dc.identifier.uri | http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/106689 | |
dc.language | 中文 | |
dc.subject | 可程式化系統晶片 | zh_TW |
dc.subject | 分群演算法 | zh_TW |
dc.title | 在可程式化系統晶片上之C-Means分群演算法設計 | zh_TW |
dc.title | SoPC-based C-Means Clustering Algorithm Design | en_US |