高中工程設計取向之課程設計與實驗:跨學科STEM知識的整合與應用

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

以工程設計為主軸之STEM跨學科整合性課程,為近代科技教育課程改革主要趨勢。本研究之目的,在於發展適用於臺灣高中階段之「工程設計取向STEM課程設計模式」,並據此發展一套教學模組,以檢驗其教學成效。本研究採用混合研究法的途徑,經由前導的教學模組準實驗研究、深度訪談、與國外STEM課程內容組成分析,建構工程設計取向STEM課程設計模式的學理基礎。而後,透過再次的教學實驗,驗證本課程設計模式之可行性,並深入探討教學模組對學生學習的影響。 本研究之研究對象為台北市某高中一年級103位學生,主要研究變項為機構概念知識、工程設計核心能力、及STEM態度。教學模組選取機構設計為主題,內容包含三個STEM實作單元,及一個機構玩具設計製作專題。資料分析採取以量化為主(含描述統計、t考驗、ANOVA、ANCOVA、相關分析、及探索性的逐步迴歸分析等)、質性分析為輔的方式進行。依據研究結果與討論,本研究提出結論與建議如下: 1.本研究之教學模組,可有效提升學生對機構概念知識的理解及其於機構玩具設計製作專題之表現。 2.學生之學習興趣是影響其投入工程設計專題的重要因素,而具體、成功的實作學習經驗,會提升學生對工程設計取向課程的興趣。 3.影響學生解決工程設計問題之關鍵因素,在於學生是否能將STEM知識整合應用於「發展方案、預測分析、建模/執行方案、測試修正」等四項工程設計核心能力。 4.工程設計取向STEM課程設計模式,包含:(1)選擇課程主題、(2)剖析課程內涵、(3)建構學習經驗、(4)檢核評估等四大階段與10項步驟。 5.發展工程設計取向STEM課程之兩大關鍵,在於「聚焦核心之STEM知識」,並透過「探究實驗」與「設計製作」取向之STEM實作單元,幫助學生確實建構知識思考與工程實作的連結。 具體而言,工程設計取向之STEM課程對高中未來的科技教育應可帶來正向的影響。因此,教師可依循此課程設計模式,發展12年國教高中生活科技領域之工程設計取向課程。
Technology educators in Taiwan are increasingly recognizing the need for engineering-oriented STEM interdisciplinary curricula. The main objective of this study was to develop an ‘Engineering-Oriented STEM Curriculum Design Model’ that is appropriate for high school technology education in Taiwan. The study used a mixed-methods research approach. The academic and theoretical basis of the curriculum design model was developed from a series of pilot studies including a quasi-experimental teaching study, interviews, and a content analysis of STEM curriculum projects in the United States. A teaching module was designed based on the curriculum design model, and the effectiveness of the curriculum design model and the teaching module were assessed. The study population consisted of 103 tenth-grade students in Taipei, Taiwan. The main variables included conceptual knowledge about mechanisms, core engineering design abilities, and attitudes toward STEM. The teaching module focused on mechanism design, and included three hands-on STEM instruction units and a mechanism toy design project. The data analysis applied a quantitative approach (descriptive statistics, t-test, ANOVA, ANCOVA, correlation analysis, and exploratory regression analysis), supplemented by qualitative analysis. The analysis yielded the following findings and implications: 1. The teaching module improved performance in conceptual knowledge about mechanisms, and in the mechanism toy design project. 2. Interest in learning among students affected their performance on the project, and a positive learning experience enhanced their interest in engineering design. 3. The key factors affecting student performance in engineering design problem-solving were the ability to apply STEM knowledge about mechanisms when developing solutions, predictive analysis, modeling/ prototype construction, and testing and correction. 4. The Engineering-Oriented STEM Curriculum Design Model consists of four key stages and 10 steps. The four key stages are: (1) selecting curriculum topics; (2) analyzing curriculum content; (3) constructing a learning experience; and (4) checking and evaluating instruction units. 5. Two core principles for developing an engineering-oriented STEM curriculum are ‘focusing on core STEM knowledge’ and ‘developing effective hands-on STEM instruction units’ to provide useful ‘inquiry experiment’ and ‘design and making’ learning experiences. This kind of curriculum greatly benefits students by helping them connect the ‘thinking’ of knowledge with the ‘doing’ of engineering. In summary, the results demonstrated the positive effects of incorporating an engineering-oriented STEM curriculum into high school technology education in Taiwan. The curriculum design model is an effective instrument for developing this kind of curriculum for incorporation into the 12-year compulsory education system.

Description

Keywords

科技教育, 高中工程教育, STEM, 工程設計取向課程, 工程設計, STEM態度, Technology education, High school engineering education, STEM, Engineering-oriented curriculum, Engineering design, Attitudes toward STEM

Citation

Collections