具動態變數分群與繁衍機制的大規模多目標演化演算法

dc.contributor蔣宗哲zh_TW
dc.contributorChiang, Tsung-Cheen_US
dc.contributor.author周承霖zh_TW
dc.contributor.authorChou, Cheng-Linen_US
dc.date.accessioned2025-12-09T08:19:16Z
dc.date.available2027-08-01
dc.date.issued2025
dc.description.abstract大規模多目標最佳化問題 (large-scale multi-objective optimization problems, LSMOPs) 因其高維決策空間給傳統演化算子帶來「維度災難」,難以兼顧收斂速度與解集多樣性。為此,本文在 LVIDE 框架上提出一種動態切換變數分群的演化演算法 LVIDE-DGR。首先,我們量化每個變數對多目標問題的重要性,並生成全域重要性分群 (importance based variable grouping, IVG) 與目標專屬分群 (objective-based IVG, OIVG),同時引入線性分群 (linear grouping, LG)。演算法依設定週期在 LG 與 IVG/OIVG 之間動態切換,前期側重IVG、後期轉向各目標 OIVG,以聚焦不同搜尋階段所需的子空間。其次,我們設計了以上下界點作為導引的雙階段 VIDE 子代生成機制,在子空間內精細推進收斂;並以低機率插入差分演化 (differential evolution, DE) 運算子以補充全維度多樣性。演化過程還包括按目標拆分子族群並定期跨群交流,使算法在提速收斂的同時保持均勻的柏拉圖前緣覆蓋。實驗結果證明,本演算法在LSMOP 的 9 個測試問題中有 8 個問題勝過 5 個近期的大規模多目標演化演算法。zh_TW
dc.description.abstractLarge-scale multi-objective optimization problems (LSMOPs) present a signif-icant challenge for classical evolutionary algorithms due to the curse of dimension-ality inherent in high-dimensional decision spaces, making it difficult to achieve both rapid convergence and rich solution diversity. To address these issues, we pro-pose LVIDE-DGR, a dynamic variable-grouping evolutionary algorithm built upon the LVIDE framework. First, we quantify each decision variable’s importance and use this to form global importance-based variable groups (IVG) and objective-based IVG (OIVG), alongside a simple linear grouping (LG). During evolution, the algo-rithm periodically switches between LG and IVG/OIVG—emphasizing IVG in early stages and OIVG in later stages—to focus the search on the most relevant subspaces at each phase.Second, we introduce a two-stage VIDE offspring generation mechanism guided by decision-variable bounds for fine-grained convergence within subspaces, and we insert Differential Evolution (DE) operators at a low probability to maintain global diversity. The population is also split by objectives with periodic information ex-change across subpopulations, ensuring both accelerated convergence and uniform Pareto-front coverage. Experimental results on nine LSMOP benchmark problems demonstrate that LVIDE-DGR outperforms five state-of-the-art large-scale multi-objective evolutionary algorithms in eight out of nine cases, validating its effective-ness in balancing convergence speed and solution diversity.en_US
dc.description.sponsorship資訊工程學系zh_TW
dc.identifier61147075S-48243
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/1f365958974c8cf330c422169d8a325f/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/125815
dc.language中文
dc.subject大規模zh_TW
dc.subject多目標zh_TW
dc.subject演化演算法zh_TW
dc.subject變數分群zh_TW
dc.subjectLarge-Scaleen_US
dc.subjectMulti-Objectiveen_US
dc.subjectEvolutionary Algorithmen_US
dc.subjectVariable Groupingen_US
dc.title具動態變數分群與繁衍機制的大規模多目標演化演算法zh_TW
dc.titleA large-scale multi-objective evolutionary algorithm with dynamic variable grouping and reproduction operatorsen_US
dc.type學術論文

Files

Collections