以FPGA實現摺積神經網路及應用於人臉辨識之研究

dc.contributor吳榮根zh_TW
dc.contributor黃文吉zh_TW
dc.contributorWu, Jung-Genen_US
dc.contributorHwang, Wen-Jyien_US
dc.contributor.author王雅慶zh_TW
dc.contributor.authorWang, Ya-Chingen_US
dc.date.accessioned2019-09-05T11:12:29Z
dc.date.available2019-08-24
dc.date.available2019-09-05T11:12:29Z
dc.date.issued2016
dc.description.abstract本研究主要提出一個以可程式化邏輯閘陣列(Field Programmable Gate Array; FPGA) [1]為主的硬體架構來實現快速辨識影像架構,此架構是採用摺積神經網路(Convolutional Neural Network ; CNN)的向前傳遞法則(Forward propagation)來實現影像的辨識階段,現有的CNN系統架構多以GPU實現,GPU有高功率的缺點,而現有使用FPGA實現CNN運算的電路設計大部分只有設計CNN中的少數幾層,只實作出摺積層或是全連結層,本研究以FPGA為平台,設計CNN中的Lenet5模型,設計出Lenet5完整架構,具有低功率消耗跟極高的辨識率的優點。 本研究的架構為可程式化系統晶片(System on Programmable Chip; SOPC)中的硬體加速器以實現圖像辨識,本研究使用人臉圖像來當作辨識影像,總共辨識28個人的人臉。實驗結果顯示本研究所提出的CNN架構十分合適於使用在需要高可攜性,高辨識率,高計算速度等的視覺應用。本論文實作CNN的Lenet5架構比較適合運用在社區的人臉監視系統,Lenet5 模型對於很多人的辨識運用比其它摺積神經網路較差些,像是VGG Net [2]、GOOGLE Net [3],但對於30人左右的辨識率Lenet5模型還是辨識率還是足夠的。本研究可以使用在社區人臉辨識,社區的人臉監視系統只需要辨識社區內所有人物,而且辨識的速度快速,一有辨識錯的影像可以馬上被察覺,不會讓社區以外的人進入,這是本論文的一個有趣的應用。zh_TW
dc.description.sponsorship資訊工程學系zh_TW
dc.identifierG060347036S
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060347036S%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/106416
dc.language中文
dc.subject摺積神經網路zh_TW
dc.title以FPGA實現摺積神經網路及應用於人臉辨識之研究zh_TW
dc.titleThe implementation of CNN-based face recognition systems based on FPGAen_US

Files

Collections