金屬及介電質光子晶體若干性質之研究
Abstract
研究及探討光子晶體在可見光,UV光 IR光之穿透現象
A photonic crystal (PC) is an artificial medium with a periodic structure stacked by alternating two or more different materials with distinct refractive indices. It is known that there exist some photonic band gaps (PBGs) in a PC. wide PBGs are usually needed in photonic application. In this thesis, we investigate the one-dimensional metal-dielectric PC (MDPC), use of metal in nanometer thickness have transmittance at visible light range, use metal at visible light characteristic to design the filter, the MDPCs can be blocking ultraviolet and infrared, so it can be used for sensor protections, UV protective films and transparent display panels. In this thesis, different metals as silver (Ag), copper (Cu) and aluminum (Al) will be used in the MDPC. The theoretical analysis in this thesis is made based on the transfer matrix method. The format of thesis is as follows: The Chapter 1 is to give a brief review of PCs. The Chapter 2 describes the theoretical method used in our calculation. Some topics under study are arranged in Chapters 3, 4 and 5, respectively. The conclusion is summarized in Chapter 6.
A photonic crystal (PC) is an artificial medium with a periodic structure stacked by alternating two or more different materials with distinct refractive indices. It is known that there exist some photonic band gaps (PBGs) in a PC. wide PBGs are usually needed in photonic application. In this thesis, we investigate the one-dimensional metal-dielectric PC (MDPC), use of metal in nanometer thickness have transmittance at visible light range, use metal at visible light characteristic to design the filter, the MDPCs can be blocking ultraviolet and infrared, so it can be used for sensor protections, UV protective films and transparent display panels. In this thesis, different metals as silver (Ag), copper (Cu) and aluminum (Al) will be used in the MDPC. The theoretical analysis in this thesis is made based on the transfer matrix method. The format of thesis is as follows: The Chapter 1 is to give a brief review of PCs. The Chapter 2 describes the theoretical method used in our calculation. Some topics under study are arranged in Chapters 3, 4 and 5, respectively. The conclusion is summarized in Chapter 6.
Description
Keywords
光子晶體, photonic crystals