The Exceptional Sets for the Differentiability of Plane Quasiconformal Mappings
No Thumbnail Available
Date
1989-06-??
Authors
黃文達
Journal Title
Journal ISSN
Volume Title
Publisher
國立臺灣師範大學研究發展處
Office of Research and Development
Office of Research and Development
Abstract
我們主要探討平面上一個擬保角變換的可微分性,首先證明一個K-擬保角變換f幾乎到處可微分。接著討論它的不可微分集X(f),當k=1時,它是空集合;但當k>1時,它可達到最大可能,其Hausdorff維度可為2。
We investigate the differentiability of plane quasiconformal mappings and prove that a K-quasiconformal mapping f is differentiable almost everywhere. The ex-ceptional set X(f) for the differentiability is empty if K=l, and it can be enlarged to Hausdorff dimension 2 if K>1.
We investigate the differentiability of plane quasiconformal mappings and prove that a K-quasiconformal mapping f is differentiable almost everywhere. The ex-ceptional set X(f) for the differentiability is empty if K=l, and it can be enlarged to Hausdorff dimension 2 if K>1.