基於行動裝置線上購物之資訊搜尋行為探勘消費者型態

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

本研究旨在探討消費者使用行動裝置進行線上購物時之資訊搜尋行為模式是否存在不同群集,並針對群集間差異或共同性進行討論,本研究以使用淘寶行動裝置App線上購物之消費者作為研究對象,透過設計明確及不明確之購物需求狀態任務,蒐集消費者於使用行動裝置進行線上購物時的行為過程。首先,本研究根據消費者在網站之搜尋瀏覽行為,透過瀏覽階層目錄次數、瀏覽頁面比例、頁面/時間及消費者搜尋點擊次數等四大分群指標,以K-means分群法進行分群探討,分析各族群消費的特徵,後以Zero order state transition(ZOST)搜尋移動概念觀察消費者線上移動路徑,進而比較各群之異同。本研究最終透過11項定義的頁面瀏覽指標進行分群,辨識出評論比較型及搜尋瀏覽型兩大不同樣態之消費群組。研究結果顯示,需求狀態並非影響消費者型態之主要原因。兩群消費者最明顯差異在於評論比較型較搜尋瀏覽型花費更多時間進行線上購物並有較多元的路徑移動(ZOSTs),且評論比較型消費者有明顯的瀏覽評論的行為,搜尋瀏覽型消費者停留時間則較短且僅有明顯的搜尋行為。整體而言,透過研究分析及質性訪談可瞭解,行動裝置的購物行為深受時間因素的影響,與採用電腦網頁消費行為有不同的使用動機進而影響行為。期望透過本研究,針對不同群集消費者之行為模式及需求加以分析與歸類,提供行動裝置電商平台對於不同型態消費者進行App功能設計與行銷策略之參考。
The aim of this research is to explore mobile application consumer online shopping behavior and further mine different types of consumers. We select the mobile Taobao App as our research target and design two simulated shopping tasks: goal-oriented shopping and exploratory-based shopping, based on consumers’ need-states. First, we used K-means clustering algorithm based on four aspects to analyze consumers' types of online shopping behaviors. We then adopt zero-order state transition matrices (ZOSTs) to investigate the search moves of each type of consumers. Through the 11 indicators clustering, our results show that there are two types of consumers which are review-consulting and information-searching types. Our research results reveal that the consumers’ need-states are not a main factor influencing their mobile shopping behaviors. Which the most obvious difference between the two groups of consumers is that the review-consulting type spends more time shopping online than the information-searching type and has more diverse path of ZOSTs. Different from the information-searching type, review-consulting type have obvious behavior of browsing comments, whereas information-searching type spend less time and only have some obvious searching behavior.In conclusion, using semi-structured interviews, we found that the shopping behavior on mobile application is affected by time factors deeply, having dissimilar motivations and influences, mobile consumers have different behavior from the consumer which used computer webpages. We hope these findings can provide a reference for sellers to refine mobile app features and develop marketing strategies tailored to different types of consumers.

Description

Keywords

行動裝置, 網路購物行為, 分群法, 消費族群, 移動路徑, Consumer types, K-means clustering, mobile application, shopping behaviors, searching move

Citation

Collections