Tuza 常數之研究

dc.contributor王弘倫zh_TW
dc.contributorWang, Hung-Lungen_US
dc.contributor.author呂昀珊zh_TW
dc.contributor.authorLu, Yun-Shanen_US
dc.date.accessioned2023-12-08T08:02:45Z
dc.date.available2022-09-22
dc.date.available2023-12-08T08:02:45Z
dc.date.issued2022
dc.description.abstract令 H 為一點集合為 V (H) 和邊集合為 E(H) 的超圖。橫截 (transversal) 是超圖 H 中一組點的集合,使得 H 中的每條邊都會與該集合至少交於一點。橫截數 (transversal number) τ (H) 是 H 中最小橫截的大小。如果 H 的每一條邊大小都是 k,我們會稱 H 是 k-均勻 ( k-uniform) 超圖並且會以 H_k 來表示。Tuza 常數 c_k 是一個滿足 τ (H_k) ≤ c_k(|V (H_k)| + |E(Hk)|) 的常數。目前 Tuza 常數 c_k 在 k ≥ 5 的精確值皆未知。Henning 和 Yeo 證明了 c6 ≤ 2569/14145,延伸他們的想法我們建立了當 7 ≤ k ≤ 17 時 c_k 的上界。此外,我們也建立當 7 ≤ k ≤ 17 時 c_k 的下界。zh_TW
dc.description.abstractLet H be a hypergraph with vertex set V (H) and edge set E(H). A transversal is a subset of V (H) such that every edge in H intersects this set. The cardinality of a minimum transversal of H is denoted by τ (H). A hypergraph in which every edge has size k is called a k-uniform hypergraph. The Tuza constants c_k are the constants satisfying τ (H) ≤ c_k(|V (H)|+|E(H)|), where H ranges over all k-uniform hypergraphs. The precise value of c_k for k ≥ 5 is currently unknown. Henning and Yeo showed that c_6 ≤ 2569/14145 . Extending their idea, we establish upper bounds on c_k, for 7 ≤ k ≤ 17. We also give lower bounds on c_k, for 7 ≤ k ≤ 17.en_US
dc.description.sponsorship資訊工程學系zh_TW
dc.identifier60947097S-42401
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/2a324d418b15f08eee3aaee6d8aaeef9/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/121611
dc.language英文
dc.subject橫截zh_TW
dc.subjectk-均勻超圖zh_TW
dc.subjectTuza 常數zh_TW
dc.subjectTransversalen_US
dc.subjectk-uniform hypergraphen_US
dc.subjectTuza constantsen_US
dc.titleTuza 常數之研究zh_TW
dc.titleA study on the Tuza constantsen_US
dc.typeetd

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
202200042401-104708.pdf
Size:
394.55 KB
Format:
Adobe Portable Document Format
Description:
etd

Collections