Tuza 常數之研究
| dc.contributor | 王弘倫 | zh_TW |
| dc.contributor | Wang, Hung-Lung | en_US |
| dc.contributor.author | 呂昀珊 | zh_TW |
| dc.contributor.author | Lu, Yun-Shan | en_US |
| dc.date.accessioned | 2023-12-08T08:02:45Z | |
| dc.date.available | 2022-09-22 | |
| dc.date.available | 2023-12-08T08:02:45Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | 令 H 為一點集合為 V (H) 和邊集合為 E(H) 的超圖。橫截 (transversal) 是超圖 H 中一組點的集合,使得 H 中的每條邊都會與該集合至少交於一點。橫截數 (transversal number) τ (H) 是 H 中最小橫截的大小。如果 H 的每一條邊大小都是 k,我們會稱 H 是 k-均勻 ( k-uniform) 超圖並且會以 H_k 來表示。Tuza 常數 c_k 是一個滿足 τ (H_k) ≤ c_k(|V (H_k)| + |E(Hk)|) 的常數。目前 Tuza 常數 c_k 在 k ≥ 5 的精確值皆未知。Henning 和 Yeo 證明了 c6 ≤ 2569/14145,延伸他們的想法我們建立了當 7 ≤ k ≤ 17 時 c_k 的上界。此外,我們也建立當 7 ≤ k ≤ 17 時 c_k 的下界。 | zh_TW |
| dc.description.abstract | Let H be a hypergraph with vertex set V (H) and edge set E(H). A transversal is a subset of V (H) such that every edge in H intersects this set. The cardinality of a minimum transversal of H is denoted by τ (H). A hypergraph in which every edge has size k is called a k-uniform hypergraph. The Tuza constants c_k are the constants satisfying τ (H) ≤ c_k(|V (H)|+|E(H)|), where H ranges over all k-uniform hypergraphs. The precise value of c_k for k ≥ 5 is currently unknown. Henning and Yeo showed that c_6 ≤ 2569/14145 . Extending their idea, we establish upper bounds on c_k, for 7 ≤ k ≤ 17. We also give lower bounds on c_k, for 7 ≤ k ≤ 17. | en_US |
| dc.description.sponsorship | 資訊工程學系 | zh_TW |
| dc.identifier | 60947097S-42401 | |
| dc.identifier.uri | https://etds.lib.ntnu.edu.tw/thesis/detail/2a324d418b15f08eee3aaee6d8aaeef9/ | |
| dc.identifier.uri | http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/121611 | |
| dc.language | 英文 | |
| dc.subject | 橫截 | zh_TW |
| dc.subject | k-均勻超圖 | zh_TW |
| dc.subject | Tuza 常數 | zh_TW |
| dc.subject | Transversal | en_US |
| dc.subject | k-uniform hypergraph | en_US |
| dc.subject | Tuza constants | en_US |
| dc.title | Tuza 常數之研究 | zh_TW |
| dc.title | A study on the Tuza constants | en_US |
| dc.type | etd |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 202200042401-104708.pdf
- Size:
- 394.55 KB
- Format:
- Adobe Portable Document Format
- Description:
- etd