基於自動建置的社群網路之電影中的人臉分群研究

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

傳統基於視覺的低階臉部特徵(Low-Level Face Descriptor)用於人臉分群(Face Clustering)的研究已有局限,主要的困難在於人臉在拍攝角度或亮度有差異的情況下,如何適當地衡量它們之間的相似程度,以避免在執行人臉分群的工作時,將同一個人的人臉影像分至不同人的人臉群集之中。為了解決角度亮度及人臉分群的問題,直覺的做法是需要人力的介入去檢視所有的人臉群集,並手動將相同的人臉群集合併在一起。在本篇論文中,我們提出藉由聯想預測模型(Associate-Predict Model)的方法與社群網路的特徵來解決這兩個問題。我們提出自動的方法,從電影中建立角色間的社群網路,再者,我們獲取社群網路內在所蘊含有意義的社群資訊,將這些資訊用於人臉分群的工作上以提升其準確率。我們實驗證明藉由角色間的社群關係確實可以增進人臉分群及社群網路建置的效能。
This paper describes a technique for clustering faces in movies. Traditional methods are based on low-level visual features; such approaches have limited performance because of large intra-personal variations. We propose a new approach that revises the similarity of two face clusters by the use of an associate-predict model and social relationships, which are automatically discovered from movies. Experimental results validate the effectiveness of the proposed method. In addition, our approach can be used to construct social networks between characters that describe their social relationships.

Description

Keywords

人臉分群, 社群網路, Face Clustering, Social Network

Citation

Collections