鐵電氧化鉿鋯之負電容效應及類神經元件應用

dc.contributor李敏鴻zh_TW
dc.contributorLee, Min-Hungen_US
dc.contributor.author向國瑜zh_TW
dc.contributor.authorSiang, Guo-Yuen_US
dc.date.accessioned2020-10-19T07:12:19Z
dc.date.available不公開
dc.date.available2020-10-19T07:12:19Z
dc.date.issued2019
dc.description.abstract鐵電材料的遲滯現象(Hysteresis)具有雙穩態的特性,滿足記憶體對於信號的存取要求和負電容特性(Negative capacitance, NC)電壓放大的概念,因此近年來對於鐵電材料進行廣泛的研究。由於負電容特性改善次臨界擺幅(subthreshold swing, SS),使MOSFET的SS在室溫下克服Boltzmann tyranny 2.3kbT/decade的物理極限,另一方面具有穩定遲滯現象和非破壞性讀取的特性適合作為非揮發性記憶體(Non-Volatile Memory, NVM)。 本論文將針對鐵電材料氧化鉿鋯(HfZrO2, HZO)作為元件絕緣層的特性進行研究,首先將研究環繞式閘極場效電晶體搭載鐵電薄膜後,達到負電容效應,再來使用鐵電材料與非揮發性記憶體結合,研究應用於深度學習(Deep Learning, DL)且搭配不同結構與波型,尋找最佳的資料演算方式。zh_TW
dc.description.abstractBi-stable state nature feature of hysteresis loops by ferroelectric materials satisfies the demands of storage signal purpose for memory and voltage amplification concept for negative capacitance. Therefore, it has been extensively investigated in recent years. Benefiting from negative capacitance effect, subthreshold swing (SS) demonstrated with improvement on to overcome the physical limitation of Boltzmann tyranny 2.3kbT/decade for MOSFET at room temperature. On the other hand, the property of hysteresis loops and non-destructive reading are suitable as Non-Volatile Memory (NVM). In this research, we will study the characteristics of ferroelectric material HZO as the dielectric layer of the device. Firstly, we will study the GAAFET and carry up the ferroelectric thin film HZO to achieve a negative capacitance effect, and then use ferroelectric materials in combination with NVM, and apply it to Deep Learning (DL) with different structures and waveforms to find the best data calculation method.en_US
dc.description.sponsorship光電工程研究所zh_TW
dc.identifierG060648013S
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060648013S%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/112026
dc.language中文
dc.subject鐵電材料zh_TW
dc.subject氧化鉿鋯zh_TW
dc.subject環繞式閘極場效電晶體zh_TW
dc.subject深度學習zh_TW
dc.subjectFerroelectric materialsen_US
dc.subjectHfZrO2en_US
dc.subjectGAAFETen_US
dc.subjectdeep learningen_US
dc.title鐵電氧化鉿鋯之負電容效應及類神經元件應用zh_TW
dc.titleFerroelectric HfZrO2 for Negative Capacitance and Neuromorphic Device Applicationsen_US

Files

Collections