探討建模本位探究教學於化學電池的學習成效與建模能力
No Thumbnail Available
Date
2016
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
學生學習科學方式即是建立模型的過程,並且在學習過程中,不斷修正與精緻化此模型使其能逐漸與科學模型相似,因此,在科學學習的過程中培養學生的建模能力是重要且必須的目標。本研究所使用的建構模型的過程包含八個步驟:模型選擇、模型建立、模型效化、模型分析、模型應用、模型調度、模型修正與模型重建(邱美虹,2014;Jong, Chiu,& Chung, 2015),在此過程中,每個歷程所應具備的能力即為建模能力。
本研究根據課程內容可分成:研究一:化學電池的成分與關係;研究二:化學電池的交互作用,針對學生之科學概念、建模能力與心智模式分別進行討論。本研究的研究工具改編自邱美虹(2015)科技部計畫,由一位具有科教背景的高中化學教師,與兩位資深國中教師建立專家效度,且試卷信度為 0.76與0.79。本研究之研究對象:研究一:以51位臺北市國中學生為研究對象,分成建模文本教學組(N=24)與一般文本教學組(N=27);研究二:以研究一之建模文本組為研究對象,分成建模本位探究(N=12)與一般探究教學組(N=12)。資料收集包含課程之前、後化學電池測驗以及學生晤談資料。
研究結果顯示,研究一:在化學電池的總分、成分、關係與系統此四項分類中,建模文本教學組的學習成效較一般文本教學組高;另一方面,學生建模能力的表現上,建模文本教學組,於選擇、建立、效化與應用中皆較一般文本教學組的建模能力階層高。研究二:在化學電池的總分與系統分類中,建模本位探究組的學習成效較一般探究教學組高;另一方面,學生建模能力的表現上,建模本位探究組,於建立、效化與平均建模能力皆較一般文本探究組的建模能力表現好。綜合以上研究結果可知,建模本位探究教學有助於學生在科學概念、建模能力與心智模式的學習與改變。
This study investigated the effects of a modeling-based teaching and modeling-based inquiry on 7th and 8th graders’ modeling competencies.The modeling processes included model selection, model construction, model validation, model analysis, model deployment, and model reconstruction in the study. Students learned the chemistry battery with modeling-based text and modeling-based inquiry. According to the content, there are two subjects in the study. Subject one was targeted to explore the teacher providing the modeling view during the process of science learning. Fifty-one 7th and 8th graders from a local junior high school in Taipei city were involved in the subject one. The experiment group (N=24) was 7th and 8th graders in the science club, and the control group (N=27) was 8th graders in the normal classes. The difference between the experiment group and the control group was that the former was presented with explicit descriptions and representations of modeling processes. Subject two attempted to implement the model-based inquiry teaching framework in the laboratory activity. Twenty-four students from the subject one were involved in the subject two. The experiment group (N=12) was 7th graders, and the control group (N=12) was 8th graders. This study demonstrated that modeling-based teaching and modeling-based inquiry helped students learn the science concepts, develop their modeling competencies and promote their mental model to the science model.
This study investigated the effects of a modeling-based teaching and modeling-based inquiry on 7th and 8th graders’ modeling competencies.The modeling processes included model selection, model construction, model validation, model analysis, model deployment, and model reconstruction in the study. Students learned the chemistry battery with modeling-based text and modeling-based inquiry. According to the content, there are two subjects in the study. Subject one was targeted to explore the teacher providing the modeling view during the process of science learning. Fifty-one 7th and 8th graders from a local junior high school in Taipei city were involved in the subject one. The experiment group (N=24) was 7th and 8th graders in the science club, and the control group (N=27) was 8th graders in the normal classes. The difference between the experiment group and the control group was that the former was presented with explicit descriptions and representations of modeling processes. Subject two attempted to implement the model-based inquiry teaching framework in the laboratory activity. Twenty-four students from the subject one were involved in the subject two. The experiment group (N=12) was 7th graders, and the control group (N=12) was 8th graders. This study demonstrated that modeling-based teaching and modeling-based inquiry helped students learn the science concepts, develop their modeling competencies and promote their mental model to the science model.
Description
Keywords
化學電池, 心智模式, 建模能力, 建模本位教學(MBI), Chemical battery, Mental model, Modeling competencies, Modeling-based learning