使用加上額外特徵的語言模型進行謠言偵測

dc.contributor侯文娟zh_TW
dc.contributorHou, Wen-Juanen_US
dc.contributor.author陳信睿zh_TW
dc.contributor.authorChen, Xin-Ruien_US
dc.date.accessioned2022-06-08T02:43:30Z
dc.date.available9999-12-31
dc.date.available2022-06-08T02:43:30Z
dc.date.issued2021
dc.description.abstract本篇論文提出一個強健語言模型加上額外特徵的系統,處理SemEval 2019RumourEval: Determining rumour veracity and support for rumours (SemEval2019 Task 7),主要包含了兩個任務,任務A 為 使用者的立場偵測,任務B偵測謠言是真、假或未驗證, 本研究利用到了對話分支的追蹤資訊,使用強健的預訓練語言模型與詞頻特徵,加上報導其他特徵的深度學習預訓練模型,結合兩者的預測結果,做出任務A的立場驗證,其Macro F1達到62%,再透過規則模型處理任務B的消息驗證,達到 Macro F1 68%,且 RSME降到0.5983。zh_TW
dc.description.abstractIn this paper, we propose a robust language model with external features todeal with SemEval 2019 RumourEval: Determining rumour veracity and supportfor rumours (SemEval 2019 Task 7), which mainly contains two tasks. They areTask A: User’s stance detection, and task B: detect whether the rumour is true,false or unverified. We used the tracking of the dialogue branch, a robustly pretrained language model and word frequency features concatenate a deep learningpre-trained model that reported other features. Concatenating the prediction results of the two, we reached the performance of 62% Macro F1 for task A , andthen processed the message verification of task B through a rule-based system toreach Macro F1 68% where is RMSE is reduced to 0.5983.en_US
dc.description.sponsorship資訊工程學系zh_TW
dc.identifier60847031S-40076
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/da33cedd58c76f5a00a6cdd0cabafd82/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/117319
dc.language中文
dc.subject語言模型zh_TW
dc.subject深度學習zh_TW
dc.subject假新聞zh_TW
dc.subject規則模型zh_TW
dc.subjectLanguage Modelen_US
dc.subjectDeep Learningen_US
dc.subjectFake newsen_US
dc.subjectRule-based Systemen_US
dc.title使用加上額外特徵的語言模型進行謠言偵測zh_TW
dc.titleDetecting Rumours on Social Media based on aRobust Language Model with External Featuresen_US
dc.type學術論文

Files

Collections