Nonlinear Least Squares Curre Fitting

dc.contributor.author楊壬孝zh_tw
dc.date.accessioned2014-10-27T15:24:14Z
dc.date.available2014-10-27T15:24:14Z
dc.date.issued1988-06-??zh_TW
dc.description.abstract由一群資料尋找最適曲線是科學分支中一重要的工作。於本文中,我們研究最小平方法(Least squares algorithm),辛普勒斯法(Simplex algorithm)及馬克特法(Marquardt's algorithm)並於IBM PC上實際比較其效率、精確度及其方法之適用性。zh_tw
dc.description.abstractFitting curves to data is an important task in various branches of science. In this paper, we investigate and implement (on an IBM-PC) the standard linear least squares algorithm, the simplex algorithm and Marquardt's algorithm. In particular, we shall compare the efficiency. accuracy, and general applicability of these algorithms.en_US
dc.identifier62ED7B9B-0651-6687-8C04-D233C1E73080zh_TW
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/17232
dc.language英文zh_TW
dc.publisher國立臺灣師範大學研究發展處zh_tw
dc.publisherOffice of Research and Developmenten_US
dc.relation(33),329-345zh_TW
dc.relation.ispartof師大學報zh_tw
dc.subject.other非線性最小平方法zh_tw
dc.subject.other最適曲線zh_tw
dc.titleNonlinear Least Squares Curre Fittingzh-tw
dc.title.alternative非線性最小平方法之最適曲線zh_tw

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ntnulib_ja_L0801_0033_329.pdf
Size:
340.21 KB
Format:
Adobe Portable Document Format

Collections