以Memetic Algorithm為基礎的向量量化器在可程式化系統晶片上之實現
No Thumbnail Available
Date
2009
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
本論文提出一個以Memetic Algorithm(MA)為基礎的向量量化器(VQ)硬體架構;此架構中以steady-state Genetic Algorithm (GA)做全域搜尋,並採用C-means演算法進行局部改善;硬體架構中包含族群記憶體單元(population memory unit)、交配突變單元(crossover and mutation unit)、C-means單元以及生存測試更新單元( survival test and update unit);在架構中採用了以移位暫存器(Shift register)為基礎的交配突變單元,來加快交配突變運算的執行。除此之外,設計了一個pipeline架構來實現C-means單元;最後將MA電路結合軟核心(softcore)CPU並實際測量硬體電路效能。實驗的結果顯示,所提出的向量量化器(VQ)硬體架構對於VQ的最佳化是擁有高效能表現以及少量計算時間的優點。
A novel hardware architecture for memetic vector quantizer (VQ) design is presented in this thesis. The architecture uses steady-state genetic algorithm (GA) for global search, and C-means algorithm for local refinement. It adopts a shift register based circuit for accelerating mutation and crossover operations in the steady state GA. It also uses a pipeline architecture for the hardware implementation of C-means algorithm. The proposed architecture has been embedded in a softcore CPU for physical performance measurement. Experimental results show that the proposed architecture is an effective alternative for VQ optimization attaining both high performance and low computational time.
A novel hardware architecture for memetic vector quantizer (VQ) design is presented in this thesis. The architecture uses steady-state genetic algorithm (GA) for global search, and C-means algorithm for local refinement. It adopts a shift register based circuit for accelerating mutation and crossover operations in the steady state GA. It also uses a pipeline architecture for the hardware implementation of C-means algorithm. The proposed architecture has been embedded in a softcore CPU for physical performance measurement. Experimental results show that the proposed architecture is an effective alternative for VQ optimization attaining both high performance and low computational time.
Description
Keywords
基因法則, 系統晶片設計, 向量量化器, 可程式化邏輯閘陣列, GA, SOPC, VQ, FPGA