德西特空間粒子對創生

No Thumbnail Available

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

本文介紹德西特空間的特性,並在其三個最常見的時空坐標,即球坐標系、龐加萊坐標系、全域坐標系,求出對應之克萊茵-高登方程式、狄拉克方程式的解。這些純量場及費米子場的解可以用來建構創生與消滅算符、定義真空態,並研究真空粒子對產生與湮滅的過程。
In this thesis, we derive the exact solutions to the Klein-Gordon equations and the Dirac equations for the three coordinate systems in the de Sitter space: the spherical coordinate system, the Poincaré coordinate system, and the global coordinate system. By choosing proper boundary conditions of the system, we construct the in-vacuum and out-vacuum states which can be used to study the process involving creation and annihilation of particle and anti-particle pairs.

Description

Keywords

德西特空間, 克萊茵-高登方程, 狄拉克方程, 真空態, de Sitter space, Klein-Gordon equation, Dirac equation, vacuum states

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By