具有可否認性的可學習圖像加密
No Thumbnail Available
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
使用者的資料隱私在雲端機器學習中是一個非常重要的議題,在本篇論文中 我們提出一種新的威脅來自上級權威機構,權威機構可以要求使用者與雲端服務 供應商給出隱私資料,權威機構也可以監控使用者在雲端服務的行為,我們提出 了一種具有可否認性的可學習圖像加密的保護方法,當使用者遭到了上級權威機 構脅迫交出在雲端服務平台中的訓練資料,可以生成出一把假的密鑰使脅迫者進 而去解密出假的資料,保護使用者在雲端服務平台中的隱私資料,而雲端服務供 應商也因為圖像被加密無法得知使用者的隱私資料。我們使用了分佈式多模型預 測查詢提升預測準確率.因可學習圖像加密準確度降低的問題。我們也將我們的 方案與其他可學習的加密技術進行比較。
User privacy is an important issue in the cloud machine learning service. In this pa- per, we raise a new threat about the online machine learning service, which comes from outside superior authority. The authority may ask the user and the cloud to disclose se- crets and the authority can monitor the user behavior. We propose a protection approach called learnable encryption with deniability (LED), which can convince the outsider of the fake data and can protect the user privacy. Our use of learnable image encryption leads to a decrease in the accuracy of model predictions. We use distributed multi-model pre- diction queries to improve prediction accuracy. We also compared our scheme with other learnable encryption techniques.
User privacy is an important issue in the cloud machine learning service. In this pa- per, we raise a new threat about the online machine learning service, which comes from outside superior authority. The authority may ask the user and the cloud to disclose se- crets and the authority can monitor the user behavior. We propose a protection approach called learnable encryption with deniability (LED), which can convince the outsider of the fake data and can protect the user privacy. Our use of learnable image encryption leads to a decrease in the accuracy of model predictions. We use distributed multi-model pre- diction queries to improve prediction accuracy. We also compared our scheme with other learnable encryption techniques.
Description
Keywords
隱私保護機器學習, 可學習加密, 可否認加密, privacy-preserving machine learning, learnable encryption, deniable encryption