適於多叢集Fuzzy C-Means分群演算法之硬體架構設計

dc.contributor黃文吉zh_TW
dc.contributorWen-Jyi Hwangen_US
dc.contributor.author楊政諺zh_TW
dc.contributor.authorCheng-Yen Yangen_US
dc.date.accessioned2019-09-05T11:34:12Z
dc.date.available2013-8-6
dc.date.available2019-09-05T11:34:12Z
dc.date.issued2010
dc.description.abstract本論文提出一個適合在高叢集的Fuzzy c-means分群演算法硬體架構,同時對分群質量中心點和訓練向量作管線化架構(pipeline),可以獲得更低的硬體資源消耗和更高的計算速度。此外,合併以往迭代更新權重矩陣(membership coefficient matrix)以及質量中心成為單一的更新步驟,可以避免使用大量的儲存空間。 最後本論文所提出的硬體架構會在以FPGA為基礎的可程式化系統晶片設計(System On a Programmable Chip,SOPC)之平台上作實際的效能測試。由實驗的結果可知,本架構具備較低的計算複雜度、較低的硬體資源複雜度以及更高的效能。zh_TW
dc.description.abstractThis paper presents a novel low-cost and high-performance VLSI architecture for fuzzy c-means clustering. In the architecture, the operations at both the centroid and data levels are pipelined to attain high computational speed while consuming low hardware resources. In addition, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. Experimental results show that the proposed solution is an effective alternative for cluster analysis with low computational cost and high performance.en_US
dc.description.sponsorship資訊工程學系zh_TW
dc.identifierGN0697470183
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0697470183%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/106777
dc.language中文
dc.subject現場可程式邏輯陣列zh_TW
dc.subject可重組化計算zh_TW
dc.subject資料分群zh_TW
dc.subject模糊系統zh_TW
dc.subject可程式化系統晶片zh_TW
dc.subjectFPGAen_US
dc.subjectreconfigurable computingen_US
dc.subjectdata clusteringen_US
dc.subjectfuzzy systemen_US
dc.subjectsystem on programmable chipen_US
dc.title適於多叢集Fuzzy C-Means分群演算法之硬體架構設計zh_TW
dc.titleFuzzy C-Means Hardware Architecture for Applications Having Large Number of Clustersen_US

Files

Collections