Automatic Urban Road Segmentation

dc.contributor.author鍾允中zh_tw
dc.contributor.author王俊明zh_tw
dc.contributor.author張祥利zh_tw
dc.contributor.author陳世旺zh_tw
dc.contributor.authorYun-Chung Chung, Jung-Ming Wang, Shyang-Lih Chang, and Sei-Wang Chenen_US
dc.date.accessioned2020-09-03T06:26:40Z
dc.date.available2020-09-03T06:26:40Z
dc.date.issued2006-10-??
dc.description.abstract自動都市馬路區塊擷取於電腦視覺影像處理的應用上是非常重要的,舉例而言,交通流量偵測、交通監控、以及事件偵測等都需要這項技術為基礎。自動都市馬路區塊擷取可以提供影像中有效的路面區域,避免物件偵測程式浪費不需要的運算於非路面區域,並且可以減少錯誤偵測的發生。本論文中所提出自動都市馬路區塊擷取方法使用了模糊與陰影集(fuzzy-shadowed sets)的方法來自動判斷路面的區域。本論文所提出的方法包括以下四個主要步驟:背景自動產生、前景物的偵測、背景黏貼法、路面定位。由實驗的結果中顯示,本論文所提出的方法在許多實際路面影像處理應用上都有良好的結果。zh_tw
dc.description.abstractAutomatic road segmentation is important for many vision-based traffic applications, such as traffic surveillance, traffic flow measurement, and incident detection. Road segmentation provides useful information for precluding from further consideration the objects and activities appearing outside road areas. The proposed method, using fuzzy-shadowed set operations, consists of four major steps: background image generation, foreground object extraction, background pasting, and road localization. The experimental results reveal that the proposed method can effectively detect road areas under different environmental conditions.en_US
dc.identifier8F72B539-EA9B-0C96-5C06-442550ED6FAD
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/109298
dc.language英文
dc.publisher國立臺灣師範大學研究發展處zh_tw
dc.publisherOffice of Research and Developmenten_US
dc.relation51(1),33-46
dc.relation.ispartof師大學報:數理與科技類zh_tw
dc.subject.other都市馬路區塊擷取zh_tw
dc.subject.other背景黏貼法zh_tw
dc.subject.other路面定位zh_tw
dc.subject.other模糊與陰影集zh_tw
dc.subject.otherRoad segmentationen_US
dc.subject.otherBackground pastingen_US
dc.subject.otherRoad localizationen_US
dc.subject.otherFuzzy-shadowed setsen_US
dc.titleAutomatic Urban Road Segmentationzh-tw
dc.title.alternative自動都市馬路區塊擷取zh_tw

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ntnulib_ja_L0803_5101_033.pdf
Size:
627.62 KB
Format:
Adobe Portable Document Format