On the Chromatic Polynomials of Hypergraphs

dc.contributor.author許乃紅zh_tw
dc.date.accessioned2014-10-27T15:24:31Z
dc.date.available2014-10-27T15:24:31Z
dc.date.issued1985-06-??zh_TW
dc.description.abstract在本文中,我們定義超圖形之強色彩多項式與弱項式,並討論其性質,且證明一個基本定理。我們也證明若H1,H2 為二個q-邊數r-均勻之超圖形,則H1與H2之強色彩多項式與弱多項式均相同。並且若H1,H2 為二個同階的連通套套超圖形,則H1,H2的強色彩多項式相同。zh_tw
dc.description.abstractIn this paper, we define and develop the properties of the strongly chromatic polynomials and weakly chromatic polynomials of hypergraphs. We prove that strongly chromatic polynomials satisfy the fundamental theorem. We also prove that if H1 and H2 are two q-edge-tree r-uniform hypergraphs, then H1 and H2 are both strongly chromatically equivalent and weakly chromatically equivalent, and we show that if H1 and H2 are connected nested hypergraphs with the same order, then H1 and H2 are strongly chromatically equivalent.en_US
dc.identifier73434CBC-F2AA-18CA-C945-ECA1C35B72A1zh_TW
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/17295
dc.language英文zh_TW
dc.publisher國立臺灣師範大學研究發展處zh_tw
dc.publisherOffice of Research and Developmenten_US
dc.relation(30),457-468zh_TW
dc.relation.ispartof師大學報zh_tw
dc.subject.other色彩多項式zh_tw
dc.subject.other超圖形zh_tw
dc.titleOn the Chromatic Polynomials of Hypergraphszh-tw
dc.title.alternative論超圖形的色彩多項式zh_tw

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ntnulib_ja_L0801_0030_457.pdf
Size:
332.24 KB
Format:
Adobe Portable Document Format

Collections