對於3GPP LTE網路之可調適多週期不連續接收機制
No Thumbnail Available
Date
2014
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
在此論文中,將提出可調適非連續接收的架構,其能根據目前的流量類型及剩餘的電量動態地調整DRX參數。我們發展分析性模組利用傳統以及動態的DRX機制分析省電性能,並且依據發展中的分析模組設計動態的DRX架構。在運行時,每個用戶設備(UE)的最佳DRX參數,可以利用簡單的查表方式,不需要花太多時間,而得到最佳參數。最後我們進行模擬來比較我們所提出的動態DRX與傳統DRX架構下之性能。其結果顯示,我們所提出的方法能夠根據當下的流量類型和剩餘電量,有效地改進使用者感知的QoS以及節能效能,因而強化整體的LTE性能。
In the paper we present a novel adaptive multicycle Discontinuous Reception (DRX) scheme which dynamically adjusts the DRX parameters according to the base station’s perceived traffic intensity and specific Quality of service (QoS) for Long Term Evolution (LTE) networks. It is a table-driven method which off-line pre-establishes the table of the optimal DRX parameters based on a theoretical analysis approach. At runtime, the DRX parameters of each user equipment (UE) can be determined optimally with a simple table lookup rapidly without spending much computational time. We conducted simulations to compare the performance of our proposed multi-cycle DRX scheme with that of the conventional DRX scheme. The results demonstrate that our approach can effectively improve both the user-perceived service quality and power saving efficiency according to the current traffic intensity and QoS requirements, and thus enhances the overall system performances.
In the paper we present a novel adaptive multicycle Discontinuous Reception (DRX) scheme which dynamically adjusts the DRX parameters according to the base station’s perceived traffic intensity and specific Quality of service (QoS) for Long Term Evolution (LTE) networks. It is a table-driven method which off-line pre-establishes the table of the optimal DRX parameters based on a theoretical analysis approach. At runtime, the DRX parameters of each user equipment (UE) can be determined optimally with a simple table lookup rapidly without spending much computational time. We conducted simulations to compare the performance of our proposed multi-cycle DRX scheme with that of the conventional DRX scheme. The results demonstrate that our approach can effectively improve both the user-perceived service quality and power saving efficiency according to the current traffic intensity and QoS requirements, and thus enhances the overall system performances.
Description
Keywords
長期演進技術, QoS(Quality of Service), DRX(Discontinuous Reception), LTE, QoS(Quality of Service), DRX(Discontinuous Reception)