抗內旋貼紮對內旋足者下肢生物力學之影響
No Thumbnail Available
Date
2017
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
一般認為內旋足造成足弓降低、後足跟骨外翻、脛骨股骨旋轉、足底壓力分佈改變、和肌纖維徵召模式改變,是造成下肢肌肉骨骼系統傷害的主要因素之一。目前建議用來預防與治療因內旋足而造成下肢肌肉骨骼傷害的臨床策略中以貼紮效果最好,而低位岱式貼紮則是最常被使用的抗內旋貼紮。過去研究證實抗內旋貼紮可以改變下肢生物力學,其使用的非彈性貼布在運動後是否保有同樣的效果目前仍有爭議。而近來具有與皮膚相仿的彈性,使用上較為舒適、可以長時間使用的彈性貼布被廣泛的使用在運動傷害的預防與減輕症狀上,但使用在抗內旋貼紮上的效果還未被證實。因此,本研究的目的為評估無症狀之內旋足者在使用彈性貼布貼紮後及貼紮完做20分鐘的慢跑運動後舟狀骨垂直高度、舟狀骨滑落、跟骨外翻角度、足部姿勢指標、髕骨位置及足底壓力分布是否有改變。本研究屬於前瞻性的研究,為一擬實驗設計。共收取20 名 (11名男性,9名女性) 20~30歲無症狀之內旋足者。以游標尺、量角器、足踝姿勢指標量表、超音波影像儀及足底壓力分析儀測量足部之舟狀骨垂直高度、舟狀骨滑落、跟骨外翻角度、足部姿勢指標、髕骨位置及足底壓力分佈。使用G power 3.1軟體來檢測樣本數。使用SPSS軟體來做資料統計,採用Shapiro-Wilk統計檢定各項參數的常態性。以重複量測變異數分析來探討呈現常態分佈的參數在貼紮前、後及運動後的差異。若不是常態分布的參數則用無母數分析中的Friedman檢測來測試,有顯著者再用Wilcoxon sign-rank 檢測來做事後分析。研究結果顯示內旋足者在使用彈性貼布的抗內旋貼紮後相較於貼紮前可以增加舟狀骨垂直高度、減少舟狀骨滑落及跟骨外翻,足踝姿勢指標降低,但髕骨位置則沒有明顯的差異。足底壓力部分,貼紮完在行走時其足底總接觸面積、中足和後足的接觸面積都是增加的。但每個各別區域所承受的最大壓力值及承重模式則沒有差異。在20分鐘的慢跑運動後貼紮對舟狀骨的垂直高度已無支撐效果,舟狀骨滑落的支撐效果仍部分保留但沒有剛貼紮完的效果好。對跟骨外翻角度及足踝姿勢指標則仍維持貼紮後的效果。運動完靜態足底壓力分布相較於貼紮後的情況足底內側上方的足底壓力分佈減少。動態行走時的足底總接觸面積及中足接觸面積在運動後都比貼紮後會增加。後足接觸面積則與貼紮後無異。因此給予內旋足者彈性貼布低位岱式貼紮是可以改變足踝關節的生物力學及行走時的足底接觸面積,但對於髕骨位置及靜態足底壓力分佈及足底個別區域的最大壓力影響不大。在20分鐘慢跑運動後大多可以維持貼紮後的效果,還可以改變靜態足壓的分布。
Pronated foot is one of the main factors that caused musculoskeletal injuries of lower extremity and related to flat foot, calcaneus eversion, tibia and femur rotation, foot pressure redistribution, and different muscle recruitment pattern. Based on the results of previous studies, taping such as anti-pronation taping that can modified the biomechanics of lower extremity is the most effective clinical strategy to prevent and treat lower extremity musculoskeletal injuries. But whether the effects of taping with non-elastic tape can be preserved after exercise is still controversy. Low-Dye taping is a kind of anti-pronation taping which isthe most commonly used in clinical. The purpose of the study is to evaluate the effects of Low-Dye taping with elastic tape for participants with asymptomatic pronated foot in the vertical navicular height, navicular drop, the angle of calcaneus eversion, foot posture index, patella position, and plantar pressure distribution before and after exercise. The study is a prospective study with quasi experimental design. Twenty participants with asymptomatic pronated foot was recruited. The vertical navicular height, navicular drop, the angle of calcaneus eversion, foot posture index, patella position, and foot pressure were measured by caliper, protractor, foot posture index, ultrasonography, and Footscan. Effect size was determined using G power 3.1 software program. SPSS software was used for statistical analyses. The Shapiro-Wilk test was used to examine the normal distribution of continuous data. If the data were normally distributed, the repeated-measure ANOVA was used for repeated measures. If the data were not normally distributed, the Friedman test was employed and used the Wilcoxon sign-rank test for pairwise comparisons. The results showed significant differences in increasing the vertical navicular height, reducing navicular drop and calcaneus eversion, and improving foot posture index after anti-pronation taping with elastic tape. But the patella position did not reveal a significant change after taping. No obvious changes in static foot pressure measurement, weight bearing pattern, and the maximal pressure value among foot areas were found after taping. However increased mid foot and rear foot contact area and total contact area were observed during walking. After jogging exercise, less foot pressure distribution over medial upper quarter area in static measurement, greater total and mid foot contact area in walking condition, less vertical navicular height, and increased navicular drop were noted. No significant difference in rear foot contact area was showed after exercise. However, comparing to the condition before taping, the navicular still showed less collapse. Therefore, Low Dye taping with elastic tape can modify ankle biomechanics and foot contact area during walking for participants with pronated foot. But no significant changes were found in patella position, static foot pressure, and the maximum pressure value among each foot area. After 20-minute exercise, most taping effects can be maintained, and the taping can change the foot pressure distribution over medial upper quarter area in static foot pressure measurement.
Pronated foot is one of the main factors that caused musculoskeletal injuries of lower extremity and related to flat foot, calcaneus eversion, tibia and femur rotation, foot pressure redistribution, and different muscle recruitment pattern. Based on the results of previous studies, taping such as anti-pronation taping that can modified the biomechanics of lower extremity is the most effective clinical strategy to prevent and treat lower extremity musculoskeletal injuries. But whether the effects of taping with non-elastic tape can be preserved after exercise is still controversy. Low-Dye taping is a kind of anti-pronation taping which isthe most commonly used in clinical. The purpose of the study is to evaluate the effects of Low-Dye taping with elastic tape for participants with asymptomatic pronated foot in the vertical navicular height, navicular drop, the angle of calcaneus eversion, foot posture index, patella position, and plantar pressure distribution before and after exercise. The study is a prospective study with quasi experimental design. Twenty participants with asymptomatic pronated foot was recruited. The vertical navicular height, navicular drop, the angle of calcaneus eversion, foot posture index, patella position, and foot pressure were measured by caliper, protractor, foot posture index, ultrasonography, and Footscan. Effect size was determined using G power 3.1 software program. SPSS software was used for statistical analyses. The Shapiro-Wilk test was used to examine the normal distribution of continuous data. If the data were normally distributed, the repeated-measure ANOVA was used for repeated measures. If the data were not normally distributed, the Friedman test was employed and used the Wilcoxon sign-rank test for pairwise comparisons. The results showed significant differences in increasing the vertical navicular height, reducing navicular drop and calcaneus eversion, and improving foot posture index after anti-pronation taping with elastic tape. But the patella position did not reveal a significant change after taping. No obvious changes in static foot pressure measurement, weight bearing pattern, and the maximal pressure value among foot areas were found after taping. However increased mid foot and rear foot contact area and total contact area were observed during walking. After jogging exercise, less foot pressure distribution over medial upper quarter area in static measurement, greater total and mid foot contact area in walking condition, less vertical navicular height, and increased navicular drop were noted. No significant difference in rear foot contact area was showed after exercise. However, comparing to the condition before taping, the navicular still showed less collapse. Therefore, Low Dye taping with elastic tape can modify ankle biomechanics and foot contact area during walking for participants with pronated foot. But no significant changes were found in patella position, static foot pressure, and the maximum pressure value among each foot area. After 20-minute exercise, most taping effects can be maintained, and the taping can change the foot pressure distribution over medial upper quarter area in static foot pressure measurement.
Description
Keywords
內旋足, 抗內旋貼紮, 彈性貼布, 足底壓力分佈, 髕骨位置, pronated foot, anti-pronation taping, elastic tape, plantar pressure distribution, patella position