2×n踩地雷一致性問題之研究

dc.contributor林順喜zh_TW
dc.contributorLin Shun-Shiien_US
dc.contributor.author胡淑琼zh_TW
dc.contributor.authorHu Shu-chiungen_US
dc.date.accessioned2019-09-05T11:21:24Z
dc.date.available2006-7-24
dc.date.available2019-09-05T11:21:24Z
dc.date.issued2006
dc.description.abstract踩地雷是微軟作業系統上非常流行的一套單人電腦遊戲,自從Richard Kaye在2000年證明了踩地雷問題是NP-complete之後,近年來有許多學者投入這方面的研究。Meredith Kadlac提出了一維的踩地雷遊戲,並証明了一維踩地雷一致性問題(One-dimensional Minesweeper Consistency Problem)是非常容易處理的,且可以用一個決定性的有限狀態機(DFA)來判斷一個一維踩地雷的盤面是否一致。我們將此一致性問題延伸至2×n踩地雷盤面上,2×n踩地雷是二維的,但其中一個維度被限定為2。我們發現這個問題也是可克服的,我們成功的設計了一個有限狀態機,其可在線性時間內解出2n踩地雷一致性問題,因此,我們證明了2×n踩地雷一致性問題的複雜度亦為P。zh_TW
dc.description.abstractMinesweeper is a popular single-player game included with Windows operating systems. Since Richard Kaye proved that Minesweeper is NP-complete in 2000, it has been recently studied by many researchers. Meredith Kadlac had showed that one-dimensional Minesweeper consistency problem is regular and can be recognized by a deterministic finite automata. We extend the consistency problem to 2×n Minesweeper, which is two-dimensional but with its one dimension restricted to 2. We find that this problem is also tractable and design a finite automata which can solve 2n Minesweeper consistency problem in linear time. Hence, we are able to show that 2×n Minesweeper consistency problem is also in P.en_US
dc.description.sponsorship資訊工程學系zh_TW
dc.identifierGN0692470190
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0692470190%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/106634
dc.language英文
dc.language中文
dc.subject踩地雷zh_TW
dc.subject踩地雷一致性問題zh_TW
dc.subject有限狀態機zh_TW
dc.subjectPzh_TW
dc.subjectMinesweeperen_US
dc.subjectMinesweeper consistency problemen_US
dc.subjectfinite automataen_US
dc.subjectPen_US
dc.title2×n踩地雷一致性問題之研究zh_TW
dc.titleOn The Study ofen_US

Files

Original bundle

Now showing 1 - 5 of 6
No Thumbnail Available
Name:
n069247019001.pdf
Size:
43.78 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
n069247019002.pdf
Size:
173.4 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
n069247019003.pdf
Size:
170.41 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
n069247019004.pdf
Size:
59.4 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
n069247019005.pdf
Size:
35.42 KB
Format:
Adobe Portable Document Format

Collections