以BERT-CNN模型進行建議句探勘
dc.contributor | 侯文娟 | zh_TW |
dc.contributor | Hou, Wen-Juan | en_US |
dc.contributor.author | 房昱翔 | zh_TW |
dc.contributor.author | Fang, Yu-Hsiang | en_US |
dc.date.accessioned | 2022-06-08T02:43:34Z | |
dc.date.available | 9999-12-31 | |
dc.date.available | 2022-06-08T02:43:34Z | |
dc.date.issued | 2021 | |
dc.description.abstract | 隨著智慧型手機、行動網路的普及,民眾每天接收到的訊息量與日俱增,其中評論占據了很大一部份,不同於氣象預報、股票市值這些僅能夠單方面接收的資訊,評論往往是由民眾主動去搜尋及撰寫的,舉凡食、衣、住、行、育、樂,許多民眾已經養成先上網搜尋相關評論後再做決定的習慣,本研究希望透過深度學習的方法,將大量的網路評論,在進行完整分析後作出適當的分類。本研究使用的資料集來自於2019年舉辦的國際自然語言語意評測競賽(Semantic Evaluation 2019, SemEval 2019)中的Task 9,該資料集中的評論可分為建議句(suggestion)及非建議句 (non suggestion),將其進行前處理後與類神經網路模型進行連接,其中用到了由Google公司於2018年提出的BERT (Bidirectional Encoder Representations from Transformer)及卷積類神經網路(Convolutional Neural Networks, CNN)。本研究將對該競賽項目的子任務A進行實驗,評估方式採用正確率(Precision) 及F1分數(F1-measure, F1),其中驗證資料集同樣來自SemEval主辦方,並會與當年參加競賽的隊伍進行比較。 | zh_TW |
dc.description.abstract | none | en_US |
dc.description.sponsorship | 資訊工程學系 | zh_TW |
dc.identifier | 60847066S-40106 | |
dc.identifier.uri | https://etds.lib.ntnu.edu.tw/thesis/detail/e470ecd665d366c11c8ab9753d3f2c4e/ | |
dc.identifier.uri | http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/117336 | |
dc.language | 中文 | |
dc.subject | 深度學習 | zh_TW |
dc.subject | 建議句探勘 | zh_TW |
dc.subject | Deep Learning | en_US |
dc.subject | Suggestion Mining | en_US |
dc.subject | BERT | en_US |
dc.subject | CNN | en_US |
dc.title | 以BERT-CNN模型進行建議句探勘 | zh_TW |
dc.title | A BERT-CNN Model for Suggestion Mining | en_US |
dc.type | 學術論文 |