在高中階段教導學生運用對稱觀念思考物理現象之可行性探討-以光學為例

dc.contributor譚克平zh_TW
dc.contributorHak-Ping Tamen_US
dc.contributor.author王文宏zh_TW
dc.contributor.authorWun-Hong Wangen_US
dc.date.accessioned2019-09-05T06:38:36Z
dc.date.available2015-08-22
dc.date.available2019-09-05T06:38:36Z
dc.date.issued2012
dc.description.abstract  本研究的主要目的是開發一套運用「對稱性思維」理解物理現象的學習方法。在前實驗研究設計架構之下,以小規模教學實驗的方式進行高中生光學單元的教學研究。本研究採取立意取樣方式挑選6位宜蘭縣某校的高一學生參加。並初步嘗試以對稱性的觀點來呈現光學教材。主要以引領學生透過掌握對稱性質來思考物理問題和鼓勵他們多利用對稱性思維的方式來進行這12節課的教學。透過前後測的對照來評估此方法的可行性和學生對此創意課程的接受情況。資料分析參照多方資料進行詮釋,例如透過影像紀錄、建構反應式試題、結合選擇題和開放式問答的態度問卷以及個別訪談。並配合量化資料分析作混合方法的研究。   此創意課程的主要特色就是盡可能凸顯高一光學單元內容中的對稱性。研究的基本假設是認為學生能理解物理學中對稱性的意涵。然後,整個課程就強調使用對稱性思惟來學習科學。教材的內容依序是對稱性的介紹、光的直進性、面鏡成像、透鏡成像、光的本質。並透過教學和探究實驗活動讓學生瞭解其中對稱性,像是光徑的可逆性、視差法、凸透鏡成像的共軛、透鏡與面鏡成像差異其背後的規律性、…等。有兩個主要的紙筆式研究工具。第一個是光學概念評量試題,目的用來評量學生在教學前後對於光學概念的瞭解情形。第二個是課後問卷,用來調查學生對於此實驗教學的感受,以及蒐集這群學生對於課程的意見。   研究結果發現,6位學生中經過本實驗教學,雖然成績進步幅度在統計上未達顯著,但是這可能是由樣本數太少,導致t考驗的統計考驗力不足之故,因此宜同時估計此前後測設計的效果量約為.40,屬於接近中等程度的效果量。根據質性資料的分析結果,的確反映出學生普遍能夠建立起正確的光學概念。此外,部分學生經過本實驗教學能夠思考物理現象背後的對稱性,甚至能夠利用對稱性思維來思考。多數學生認為本實驗教學能提供機會讓他們學會欣賞自然現象背後的規律性、對稱性。本研究之發現確實反映出藉由對稱性來學習光學是一個可行的方式。建議未來能夠以大樣本的研究設計來進行驗證。總之,將此類設計應用在其他物理主題的學習似乎頗富願景。zh_TW
dc.description.abstractThe main purpose of this study was to investigate ways to help students apply “symmetrical reasoning” to comprehend physical phenomena as a way of learning science. This is done by way of a small-scaled teaching experiment under the pre-experimental design on the unit of optics for senior high school students. Six tenth graders from the Yilan County were selected to participate in the study by means of purposive sampling. Teaching materials were first prepared by representing optics from the perspectives of symmetry. Six classes of instruction were conducted by emphasizing students to think of physics problems from the viewpoint of symmetry and encouraged them to apply symmetrical reasoning more frequently. The feasibility of this approach was estimated based on a pretest and a posttest as well as on the participants’ acceptance of the innovative program. Data analysis were mainly done in accordance to the interpretive paradigm on various data sources, including video recording, multiple choices items and constructed responses items, attitudinal questionnaires with both multiple choices and open-ended items, and personal interviews. A mixed research approach was attempted whenever quantitative data analysis could be done. The main feature about the experimental material is that most of the optics material was introduced from the angle of symmetry. The basic assumption of this study is that students can understand the implications for symmetry in the physical sciences. Accordingly, the instruction was delivered by emphasizing the use of symmetrical reasoning in learning sciences. The order of material introduced included an introduction about symmetry, rectilinear propagation of light, mirror imaging, lens imaging and the nature of light. The lectures were embedded with inquiry-based experiments. The purpose of these activities was to lead students to recognize the presence of symmetry behind various physical phenomena. It can be identified in the reversibility of light, mirror imaging, parallax, conjugate imaging of convergent lens, as well as in the ordering between lens. There were two main paper and pencil research tools. The first one was the optical concept assessment instrument thatexamined students’ knowledge about optics before and after the instruction. The second one was the course questionnaire that surveyed students’ opinions about the experimental program. It was found that students who took the experimental course did not demonstrate significantly greater improvement than those who did not participate in the course. This finding can partly be attributed to the low statistical power of paired t-test due to small sample size. Effect size of paired design was hence computed for further information. It was found that the effect size was about .40 which, according to Cohen, can be treated as of medium effect. Results from qualitative data analysis further reflected that the participating students mostly had correct conceptions about optics. Furthermore, some students who took the experimental course could comprehend the symmetry behind physical phenomena and could even apply symmetrical reasoning within the context of the experimental optics materials. Most participants expressed that the course provide them a chance to appreciate the order (i.e., regularity, simplicity and symmetry) behind the nature. The research findings provided evidences that learning optics by way of symmetry is a feasible approach and that a further study with a larger sample size is called for to verify the results reported herein. In sum, extension of this approach to other areas of physics looks very promising.en_US
dc.description.sponsorship科學教育研究所zh_TW
dc.identifierGN0698450128
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0698450128%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/104699
dc.language中文
dc.subject對稱zh_TW
dc.subject對稱性思維zh_TW
dc.subject光學zh_TW
dc.subjectsymmetryen_US
dc.subjectsymmetrical reasoningen_US
dc.subjectopticsen_US
dc.title在高中階段教導學生運用對稱觀念思考物理現象之可行性探討-以光學為例zh_TW
dc.titleA Teaching Experiment on the Feasibility of Enabling Senior High School Students to Apply Symmetrical Reasoning to Comprehend Physical Phenomena: Using the Unit of Optics as an Exampleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
n069845012801.pdf
Size:
3.15 MB
Format:
Adobe Portable Document Format

Collections