單次羽球與跑步運動對血清腦源性神經滋養因子與認知功能的效應

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

背景:腦延伸神經滋養因子(brain derived neurotrophic factor, BDNF)對認知、學習與能量代謝機能有促進效果,豐富的環境刺激能夠提升大腦內的BDNF。單次運動即可提升的血液中的BDNF的濃度亦能促進認知功能。目的:本研究旨在探討單次開放性羽球運動與封閉性跑步運動對於提升BDNF與認知功能效益之差異。方法:本研究採平衡次序研究設計。招募23位健康受試者(年齡22.78±2.54歲),分別進行單次30分鐘、60%HRR羽球及跑步運動,並在進行運動前後進行BDNF與認知功能檢測。結果:單次羽球與跑步運動皆能顯著提升BDNF濃度,而羽球運動提升BDNF濃度效果顯著高於跑步運動(羽球 vs. 跑步:4.29±2.92 vs. 2.21±4.14 ng/mL)。單次羽球與跑步運動皆能提升Flanker測驗一致與不一致性題目的反應速度 (運動前 vs. 運動後:382.41±44.47 vs. 368.24±40.66 ms),但二項運動間無顯著差異。另外,運動增加BDNF與提升認知功能之間無顯著相關 (p>.05)。結論:結合豐富環境刺激的運動可以更有效提升BDNF的濃度,但在單次的運動上並沒有認知功能的運動類型差異。
Background: Brain derived neurotrophic factor (BDNF) is effective in enhancing cognition, learning, and energy metabolism. Enriched environment can increase BDNF concentration. Acute exercise can not only increase BDNF concentration but also enhance cognitive function. Purpose: This study aims to investigate and compare the effects of acute open skill badminton and acute closed skill running on increasing BDNF concentration and cognitive function. Method: The present recruited 23 healthy subjects (age: 22.78±2.54), who were respectively given acute 60%HRR badminton and running for 30 minutes by counterbalanced order. The subjects were examined on both BDNF concentration and cognitive function before and after the acute exercise. Results: The results show that both acute badminton and acute running significantly increased BDNF concentration, while the badminton is significantly more effective in improving BDNF concentration than the running (badminton vs. running: 4.29±2.92 vs. 2.21±4.14 ng/mL). Both badminton and running can reduce the reaction time of congruent and incongruent Flanker test (pre-exercise vs. post-exercise: 382.41±44.47 vs. 368.24±40.66 ms); however, there is no significant difference between the two types of exercise. In addition, the enhancement of BDNF concentration after acute exercise is not significantly correlate with the improvement in cognitive function after acute exercise (p>.05). Conclusion: This study suggests that exercise combined with enriched environment is effective in enhancing BDNF concentration; however, different types of acute exercise are not a factor in the enhancement of cognitive function.

Description

Keywords

開放性運動, 封閉性運動, 環境豐富化, 神經可塑性, open skill, closed skill, enriched environment, neuroplasticity

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By