奈米級尺寸顆粒 Bi1-xDyxFeO3 多鐵材料之光譜性質研究
No Thumbnail Available
Date
2011
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
本論文研究奈米級尺寸顆粒 Bi1-xDyxFeO3(x = 0.00、0.05、0.10、0.15、0.20、0.30、0.40)多鐵材料的全頻反射與拉曼散射光譜。隨著摻雜鏑離子濃度的增加,紅外光與拉曼活性振動模的變化符合x 光繞射能譜的晶格結構分析:(i)0.00 ≤ x ≤ 0.05 屬於空間群 R3c 菱形晶系結構;(ii)0.20 ≤ x ≤ 0.40屬於空間群 Pnma 正交晶系結構;(iii)x = 0.10與 0.15 顯示兩相共存狀態。此外,高頻紅外光吸收與拉曼散射光譜展現多倍磁振子的貢獻,代表鏑離子的摻雜和奈米級尺寸顆粒導致Bi1-xDyxFeO3本身磁性結構的改變。更有趣地是低頻拉曼散射光譜顯現擴散響應,我們認為鏑離子的摻雜引起晶格局部扭曲,降低電荷的漂移率,造成Bi1-xDyxFeO3的電性傳導屬於電荷躍遷機制。
高溫拉曼散射光譜顯示:(i)在預期的尼爾溫度附近,各拉曼峰的參數(頻率位置、半高寬、及強度)並未發生明顯地異常變化,這代表自旋與聲子的交互作用微弱;(ii)擴散響應之半高寬隨溫度升高而變小,Bi1-xDyxFeO3電荷彼此之間的碰撞率降低,暗指其電性傳導愈佳化。
We present the results of infrared, optical reflectivity and Raman-scattering measurements of nano-sized Bi1-xDy xFeO3 (x = 0, 0.05, 0.10, 0.20, 0.30, and 0.40) polycrystalline samples. It is found that when doping with Dy on Bi-site, the variations of infrared and Raman-active phonon modes are consistent with the analysis of x-ray powder diffraction spectra: (i) rhombohedral space group R3c as 0.00 ≤ x ≤ 0.05;(ii) dominant orthorhombic group Pnma as 0.20 ≤ x ≤ 0.40; and (iii) rhombohedral and orthorhombic mixings as x = 0.10 and 0.15. Moreover, multimagnon excitations are observed in both infrared absorption and high-frequency Raman-scattering spectra, indicating Dy doping and the nano-sized grains modify the magnetic structures of these materials. Interestingly, low-frequency Raman-scattering spectra exhibit diffusive response, reflecting the substitution of Dy for Bi induces the local lattice distortion and a concomitant reduction in the carrier mobility which manifest in the carrier hopping mechanism in Bi1-xDy xFeO3. With increasing temperature, there are two important features to the Raman-scattering spectra: (i) no detectable phonon anomalies are observed near the Néel temperature, suggesting the spin-phonon coupling is weak; and (ii) the scattering rate of diffusive hopping of the carriers is decreasing, indicating the enhancement of conductivity in these materials.
We present the results of infrared, optical reflectivity and Raman-scattering measurements of nano-sized Bi1-xDy xFeO3 (x = 0, 0.05, 0.10, 0.20, 0.30, and 0.40) polycrystalline samples. It is found that when doping with Dy on Bi-site, the variations of infrared and Raman-active phonon modes are consistent with the analysis of x-ray powder diffraction spectra: (i) rhombohedral space group R3c as 0.00 ≤ x ≤ 0.05;(ii) dominant orthorhombic group Pnma as 0.20 ≤ x ≤ 0.40; and (iii) rhombohedral and orthorhombic mixings as x = 0.10 and 0.15. Moreover, multimagnon excitations are observed in both infrared absorption and high-frequency Raman-scattering spectra, indicating Dy doping and the nano-sized grains modify the magnetic structures of these materials. Interestingly, low-frequency Raman-scattering spectra exhibit diffusive response, reflecting the substitution of Dy for Bi induces the local lattice distortion and a concomitant reduction in the carrier mobility which manifest in the carrier hopping mechanism in Bi1-xDy xFeO3. With increasing temperature, there are two important features to the Raman-scattering spectra: (i) no detectable phonon anomalies are observed near the Néel temperature, suggesting the spin-phonon coupling is weak; and (ii) the scattering rate of diffusive hopping of the carriers is decreasing, indicating the enhancement of conductivity in these materials.
Description
Keywords
鉍鐵氧, 奈米顆粒, 多鐵, 光譜研究, BiFeO3, nano-sized grains, multiferroic, optical studies