The Maximum Likelihood Estimates of Multinomial Parameters Subject to Stochastic Order with Equality

dc.contributor.author張少同zh_tw
dc.contributor.author呂小娟zh_tw
dc.contributor.authorShao-Tung Chang and Hsiao-Chuan Luen_US
dc.date.accessioned2020-09-03T06:26:45Z
dc.date.available2020-09-03T06:26:45Z
dc.date.issued1999-10-??
dc.description.abstract長久以來,有關隨機序的估計問題一直被廣泛的討論與應用,然而在許多實際的應用上,我們發現兩組多項式分配的參數p和q除了隨機之外,可能還有其他的關係,例如相等、相差一個常數,或是成倍數關係。我們對參數了解愈多,愈能夠得到更精確的估計,因而在文章中,我們仿效Barlow及Brunk(1972)的方法推得在隨機序與部分等式條件下,多項式參數的最大概似估計。我們依單樣本和雙樣本分別討論並提供應用實例,此外我們也探討估計的一致性問題。zh_tw
dc.description.abstractThe problems of maximum likelihood estimates of multinomial parameters subject to stochastic ordering have been widely discussed. However, in some applications, the multinomial parameters p and q may not only satisfy the stochastically ordered constraints but also the equality of some of these parameters. We follow Barlow and Brunk's method (1972) and obtain the Fenchel duality projection-type maximum likelihood estimates of multinomial parameters under this modified hypothesis for both one-sample and two-sample problems. The consistency of the estimates is proved and. an example is also presented as an illustration.en_US
dc.identifierE4688E89-BF04-5C7D-D13E-E80E7EC36F0A
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/109309
dc.language英文
dc.publisher國立臺灣師範大學研究發展處zh_tw
dc.publisherOffice of Research and Developmenten_US
dc.relation44(1&2),1-9
dc.relation.ispartof師大學報:數理與科技類zh_tw
dc.subject.other多項式參數zh_tw
dc.subject.other最大概似估計zh_tw
dc.subject.other隨機序zh_tw
dc.subject.other最小平方投影zh_tw
dc.subject.otherMultinomial parametersen_US
dc.subject.otherMaximum likelihood estimateen_US
dc.subject.otherStochastic orderingen_US
dc.subject.otherLeast square projectionen_US
dc.titleThe Maximum Likelihood Estimates of Multinomial Parameters Subject to Stochastic Order with Equalityzh-tw
dc.title.alternative有等式隨機序的最大概似估計zh_tw

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ntnulib_ja_L0803_4401_001.pdf
Size:
338.66 KB
Format:
Adobe Portable Document Format