運用腦磁圖儀法初探大專學生進行以月相變化為主題之數位互動學習活動前後之腦部活化型態
No Thumbnail Available
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
本研究透過腦磁圖儀進行紀錄分析,欲嘗試了解學生進行「月相變化」之數位學習活動前後的腦部活化模式。本研究利用Unity建立一具動態及互動特性之數位科學學習環境,主題為「月相變化」,主要探討日、地、月的相對空間關係如何影響地球上看到月亮的圓缺變化。研究設計包含前後月相變化概念測驗,並搭配MEG腦磁圖儀進行腦波數據蒐集,研究對象為滿20歲以上之大學以上學生 (含研究生),共計42位學生,然後由這些學生中選出 26位參與本研究之MEG資料分析。前後測試題按概念內容分為五類題型,從各類型中挑選一題,然後根據各題答題表現進行資料樣本的選取,依答題對錯分為兩組,每題每組各5位學生,第一組為前測回答錯誤,而在經過學習後於後測回答正確之受試者 (G1),第二組則是前測回答錯誤但學習後回答亦為錯誤的受試者 (G2)。由於不同題型有重複被挑選的受試者,因此共有26名受試者之MEG腦波資料被選取出來進行後續的分析。月相概念之前後測的比較以平均數的數值分析為主,而MEG資料分析則是使用MATLAB的FieldTrip分析軟體進行Alpha與Beta頻段的腦波數據之分析,再透過統計方法進行腦波資料分析後的整理比較。研究發現學習者在進行不同題型的試題作答時,不同表現的學生腦區活化與連結有所差異,此現象在需要複雜空間運思的題目上特別明顯。從腦波的強度與連結的分析結果發現,成功解題者在後測解題時,多數有腦部強度下降的趨勢(但複雜題型變強),且腦區連結較弱或甚至有變弱的現象,但解題失敗的學生變化趨勢並不明顯。
This study used MEG (Magnetoencephalograph) to record and analyze the patterns of the brain activations, before and after students learned the concepts about moon phases in a digital interactive learning environment. This study used Unity to create a dynamic and interactive science learning media on the topic of"Moon Phases". It mainly discusses how the relative spatial relationship between the sun, the earth, and the moon affects the change of the moon phases observed on the earth. A pre and post conceptual tests assessing the understanding about the changes of the moon phases were prepared. Participants took the tests while MEG was applied to record their brain waves signals during the tests. Participants of the study were 42 univeristy students over 20 years old (including graduate students). For the study purpose, 26 of these students were selected for MEG analysis.The pre and post tests are divided into five types according to the concept and spatial information involved in each item. And then, two groups of students were selected for analysis. The first group were the subjects who answered incorrectly in the pre-test, but correctly in the post-test after the digital interactive learning (G1). The second group were the subjects who answered incorrectly in both the pre- and post- tests (G2). Due to the repeated selection of subjects for different question types, a total of 26 subjects were involved in data analysis. .Brain activation data collected by MEG were mainly Alpha and Beta waves. These wave signals were analyzed with respect to different brain areas using MATLAB’s FieldTrip analysis software and the comparisons on means were made using statistical methods.The study found that when learners answered different types of questions, the activations and connection of the brain regions of students were different. This phenomenon was particularly obvious on test items that required complex spatial thinking. From the analysis of brain waves, it was found that most of those who succeeded in the post test showed a tendency of reduction in their brain activations when solving simple items but the activations became stronger when solving the complex ones. Meanwhile the brain area connections became weak.
This study used MEG (Magnetoencephalograph) to record and analyze the patterns of the brain activations, before and after students learned the concepts about moon phases in a digital interactive learning environment. This study used Unity to create a dynamic and interactive science learning media on the topic of"Moon Phases". It mainly discusses how the relative spatial relationship between the sun, the earth, and the moon affects the change of the moon phases observed on the earth. A pre and post conceptual tests assessing the understanding about the changes of the moon phases were prepared. Participants took the tests while MEG was applied to record their brain waves signals during the tests. Participants of the study were 42 univeristy students over 20 years old (including graduate students). For the study purpose, 26 of these students were selected for MEG analysis.The pre and post tests are divided into five types according to the concept and spatial information involved in each item. And then, two groups of students were selected for analysis. The first group were the subjects who answered incorrectly in the pre-test, but correctly in the post-test after the digital interactive learning (G1). The second group were the subjects who answered incorrectly in both the pre- and post- tests (G2). Due to the repeated selection of subjects for different question types, a total of 26 subjects were involved in data analysis. .Brain activation data collected by MEG were mainly Alpha and Beta waves. These wave signals were analyzed with respect to different brain areas using MATLAB’s FieldTrip analysis software and the comparisons on means were made using statistical methods.The study found that when learners answered different types of questions, the activations and connection of the brain regions of students were different. This phenomenon was particularly obvious on test items that required complex spatial thinking. From the analysis of brain waves, it was found that most of those who succeeded in the post test showed a tendency of reduction in their brain activations when solving simple items but the activations became stronger when solving the complex ones. Meanwhile the brain area connections became weak.
Description
Keywords
月相變化, 腦磁圖儀, 數位互動學習, Moon Phase, MEG, Digital learning, Interactive learning