簡化退火演算法基於模糊類神經網路控制器於非線性系統之控制

dc.contributor呂藝光博士zh_TW
dc.contributor王偉彥博士zh_TW
dc.contributorYih-Guang Leuen_US
dc.contributorWei-Yen Wangen_US
dc.contributor.author廖建豪zh_TW
dc.contributor.authorJian-Hao Liaoen_US
dc.date.accessioned2019-09-04T02:39:31Z
dc.date.available2012-7-23
dc.date.available2019-09-04T02:39:31Z
dc.date.issued2009
dc.description.abstract本文提出一個利用簡化的模擬退火演算法來調整模糊類神經網路的參數,並將其應用於函數近似與非線性系統之適應控制器設計。此簡化的模擬退火演算法應用於適應控制器設計,不需要事先離線學習的程序和複雜的數學運算。相較於傳統非線性系統的適應控制器,可有效減少適應控制器所需複雜的數學運算。在非線性系統之適應控制過程中,模糊類神經控制器的權重値是經由模擬退火演算法來即時調整,以產生適當的控制輸入。為了即時評估閉迴路系統穩定的趨勢,本文從Lyapunov函數的推導過程中,提出一個能量成本函數於簡化的模擬退火最佳演算法中,藉著獲得較佳的閉迴路系統的穩定度。此外,由於簡化模擬退火法,可能在即時控制過程中使系統狀態進入不安全的區域。因此,加入監督控制器以限制閉迴路系統的狀態進入不安全的區域。 本文藉由電腦模擬結果驗證所提出方法的可行性與效能。最後,將此模糊類神經控制器應用在直流伺服馬達追蹤控制實驗。zh_TW
dc.description.abstractIn this thesis, a reduced simulated annealing algorithm used to tune the parameters of fuzzy neural networks is proposed for function approximation and adaptive control of nonlinear systems. For the design of adaptive controller, the reduced simulated annealing algorithm does not require the procedure of off-line learning and the complicated mathematical form. Compared with traditional adaptive controllers, computation loading can be effectively alleviated. In adaptive control procedure for nonlinear systems, the weights of the fuzzy neural controller are online adjusted by the reduced simulated annealing algorithm in order to generate the appropriate control input. For the purpose of on-line evaluating the stability of the closed-loop systems, an energy cost function derived from Lyapunov function is involved in the reduced simulated annealing algorithm. In addition, the system states may go into the unsafe region if the reduced simulated annealing algorithm can not instantaneously generate the appropriate weights. In order to guarantee the stability of the closed-loop nonlinear system, a supervisory controller is incorporated into the fuzzy neural controller. Finally, some computer simulation examples and a servo motor experiment are provided to demonstrate the feasibility and effectiveness of the proposed method.en_US
dc.description.sponsorship工業教育學系zh_TW
dc.identifierGN0696700232
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0696700232%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/99107
dc.language英文
dc.subject模擬退火演算法zh_TW
dc.subject模糊類神經zh_TW
dc.subject適應控制zh_TW
dc.subject非線性控制zh_TW
dc.subjectsimulated annealing algorithmen_US
dc.subjectfuzzy neural networksen_US
dc.subjectadaptive controlen_US
dc.subjectnonlinear systemsen_US
dc.title簡化退火演算法基於模糊類神經網路控制器於非線性系統之控制zh_TW
dc.titleReduced SA Fuzzy-neural Controller for Nonlinear Systemsen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
n069670023201.pdf
Size:
732.43 KB
Format:
Adobe Portable Document Format

Collections