一維non-Hermitian 拓樸模型
dc.contributor | 高賢忠 | zh_TW |
dc.contributor | Kao, Hsien-Chung | en_US |
dc.contributor.author | 姚有徽 | zh_TW |
dc.contributor.author | Io, Iao-Fai | en_US |
dc.date.accessioned | 2023-12-08T07:57:19Z | |
dc.date.available | 2022-07-20 | |
dc.date.available | 2023-12-08T07:57:19Z | |
dc.date.issued | 2022 | |
dc.description.abstract | 本文首先介紹在一維拓樸絕緣體常討論的Su-Schrieffer-Heeger (SSH) model以及其推廣的模型,我們可以用bulk-edge correspondence去預測拓樸系統中邊界態數目。接下來將上述的模型推廣到non-Hermitian (NH)的形式,我們發現在NH系統中存在skin effect以及exceptional point,這些是當系統為Hermitian時不具有的性質。我們利用解析解計算研究exceptional points (EPs)在不同的模型下出現的條件,並了解其性質。 | zh_TW |
dc.description.abstract | In this thesis we will introduce the Su-Schrieffer-Heeger (SSH) model, which is a prototype of one dimension topological insulator and its extended versions. It is known that bulk-edge correspondence may be used to predict the number of edge state on the boundary of a topological system. Next we extended these models to non-Hermitian (NH) Form, we found that in a NH system there exists skin effect and exceptional points which cannot be found in a Hermitian system. We use analytical calculation to find the condition of exceptional points (EPs) in different models, and study their property. | en_US |
dc.description.sponsorship | 物理學系 | zh_TW |
dc.identifier | 61041003S-41429 | |
dc.identifier.uri | https://etds.lib.ntnu.edu.tw/thesis/detail/a9d3375009b69dfe81b82d2323e8eecb/ | |
dc.identifier.uri | http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/121170 | |
dc.language | 中文 | |
dc.subject | SSH Model | zh_TW |
dc.subject | bulk-edge correspondence | zh_TW |
dc.subject | Non-Hermitian | zh_TW |
dc.subject | Exceptional point | zh_TW |
dc.subject | SSH Model | en_US |
dc.subject | bulk-edge correspondence | en_US |
dc.subject | Non-Hermitian | en_US |
dc.subject | Exceptional point | en_US |
dc.title | 一維non-Hermitian 拓樸模型 | zh_TW |
dc.title | 1D non-Hermitian topological model | en_US |
dc.type | etd |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 202200041429-103827.pdf
- Size:
- 4.05 MB
- Format:
- Adobe Portable Document Format
- Description:
- etd