建構國小科學本質學習要項與教學研究
No Thumbnail Available
Date
2017
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
有鑑於目前在我國12年國教課程綱要正在進行編修的時期,本研究參考實證哲學、科學史、科學心理、科學社會學領域的文獻及若干國家科學本質課程要項,先歸納出重要的科學本質項目23項,依其科哲觀點區分成實證、調和與後實證觀點。再請國內專家學者與學專門教師,進行大慧法(Delphi technique)問卷調查,以尋求適合國小學生學習的科學本質要項的共識。從分析Kendall和諧係數可知,科學本質在國小課程的重要性與科學本質的哲學觀點,各群內兩回問卷皆達顯著的一致性,且專家學者與專門教師在兩回合大慧法問卷,也達成顯著的一致性。大慧法歸納出的科學本質學習項目共十項,如:科學家需要創造力與想像力、科學由科學社群建構而成、科學目的之一在解決問題,以及科學知識帶給人們啟示等,適合納入國小自然科學課程與教學。本研究另一個目的在尋找能達成目的的教學,使學生能達成前述科學本質要項的學習。以作者任教學校的六年級班級分成:一般教學、論證教學、論證省思教學三種策略進行準實驗研究,來瞭解學生經六個活動後,是否達成專家學者的科學本質認識。透過質性(五題)與量化前、後測(30題)、教室錄影音、訪談(七題)與學生學習單等資料來源分析,發現一般教學班與高成就學生科學本質觀點未改變,而論證教學與論證省思教學班的學生科學本質有部分項目觀點改變,論證省思班與高成就學生的科學本質觀點經教學後較能接近前述的科學本質要項的學習目標。論證與論證省思班的中、低學習成就學生在若干科學本質觀點上也有轉變。論證與論證省思班學生的論證皆有進步,其中論證省思班以主張和理由進步較多。論證省思班的學習活動設計較強調後設認知策略,使學生對科學本質認識的轉變較明顯。研究結果建議,論證省思教學模式可提升國小學生建立科學本質的認識。
This study reviewed the literature regarding positivist philosophy of science, psychology of science, history of science, sociology of science, articles published by Lederman and colleagues, and curricular benchmarks of some countries, and then generated 23 items of aspects of nature of science (NOS). Three categories representing different philosophical perspectives were determined including positivism, eclecticism, and post-positivism. The 23 NOS content items were inspected by professional elementary science teachers and scholars, who possessed a masters in science, science education, and science philosophy by using the Delphi technique. There were no difference on the ranking of the importance of the NOS items according to the results of Kendall’s coefficient of concordances and also no significant differences between scholars’ and teachers’ views on the categories of philosophical perspectives. This study proposed 10 essential NOS aspects, such as “science inspires people,” “the purpose of science is to solve problems,” “scientific knowledge aims to be enduring but sometimes is subject to change,” “science is constructed by the scientific community,” “scientists use creativity and imagination,” etc. The second goal of this study is to find an effective teaching strategy to make students change their NOS viewpoints close to the result of the Delphi study. For realizing the processes and effectiveness of students’ NOS views, a quasi-experimental study was conducted with students of five classes randomly assigned to general teaching, argumentation teaching, and reflective-argumentation teaching. By analyzing pre- and post- tests, classroom videos and observation records, student interviews, and worksheets, the researcher found that the students in general teaching had not change their NOS views. Students in argumentation teaching and reflective-argumentation teaching had some NOS views changed, especially boys and mid and low learning achievement students. Results suggest that the reflective-argumentation teaching could make students’ NOS views approaching to the Delphi results. Students in argumentation teaching and reflective-argumentation teaching made progress on their arguments, while the reflective-argumentation teaching could help students construct claims and reasoning better than argumentation teaching. The more range the students regulate by their meta-cognition, the more change the NOS views showed. It is suggested that the reflective argumentation teaching is a suitable strategy to help elementary students realize the contemporary NOS.
This study reviewed the literature regarding positivist philosophy of science, psychology of science, history of science, sociology of science, articles published by Lederman and colleagues, and curricular benchmarks of some countries, and then generated 23 items of aspects of nature of science (NOS). Three categories representing different philosophical perspectives were determined including positivism, eclecticism, and post-positivism. The 23 NOS content items were inspected by professional elementary science teachers and scholars, who possessed a masters in science, science education, and science philosophy by using the Delphi technique. There were no difference on the ranking of the importance of the NOS items according to the results of Kendall’s coefficient of concordances and also no significant differences between scholars’ and teachers’ views on the categories of philosophical perspectives. This study proposed 10 essential NOS aspects, such as “science inspires people,” “the purpose of science is to solve problems,” “scientific knowledge aims to be enduring but sometimes is subject to change,” “science is constructed by the scientific community,” “scientists use creativity and imagination,” etc. The second goal of this study is to find an effective teaching strategy to make students change their NOS viewpoints close to the result of the Delphi study. For realizing the processes and effectiveness of students’ NOS views, a quasi-experimental study was conducted with students of five classes randomly assigned to general teaching, argumentation teaching, and reflective-argumentation teaching. By analyzing pre- and post- tests, classroom videos and observation records, student interviews, and worksheets, the researcher found that the students in general teaching had not change their NOS views. Students in argumentation teaching and reflective-argumentation teaching had some NOS views changed, especially boys and mid and low learning achievement students. Results suggest that the reflective-argumentation teaching could make students’ NOS views approaching to the Delphi results. Students in argumentation teaching and reflective-argumentation teaching made progress on their arguments, while the reflective-argumentation teaching could help students construct claims and reasoning better than argumentation teaching. The more range the students regulate by their meta-cognition, the more change the NOS views showed. It is suggested that the reflective argumentation teaching is a suitable strategy to help elementary students realize the contemporary NOS.
Description
Keywords
大慧法, 後設認知, 科學本質, 課程綱要, 論證, Delphi Technique, Meta-cognition, Nature of Science, Curricular Benchmark, Argumentation