結合韻律特徵與聲學特徵於錯誤發音檢測與診斷之研究

dc.contributor陳柏琳zh_TW
dc.contributorChen, Berlinen_US
dc.contributor.author林奕儒zh_TW
dc.contributor.authorLin, Yi-Juen_US
dc.date.accessioned2019-09-05T11:15:01Z
dc.date.available2021-02-13
dc.date.available2019-09-05T11:15:01Z
dc.date.issued2019
dc.description.abstract本論文探討韻律特徵應用多任務深層網路模型於錯誤發音檢測及診斷(mispronunciation detection and diagnosis, MDD)之研究。電腦輔助發音訓練(computer assisted pronunciation training, CAPT)之目的在於透過電腦自動地指正外語學習者的發音問題;其在程序上大致可分為錯誤發音檢測(mispronunciation detection)與錯誤發音診斷(mispronunciation diagnosis)等兩個階段。本論文主要探討 1.)韻律特徵與聲學特徵結合後對於錯誤發音檢測與診斷的幫助。 2.)希望利用多任務深層網路模型解決資料正例反例不平衡之問題。 3.)結合基於相似度的評分(likelihood-based scoring,GOP)以及基於分類器評分(classification-based scoring)的方法達到更好的檢測結果以及診斷結果。 實驗結果顯示,聲學特徵對於錯誤發音檢測任務較有幫助;而韻律特徵對錯誤發音診斷任務有較好的助益。zh_TW
dc.description.abstractThe main idea of this thesis is to discuss the assists of the multi-task deep neural network model and prosody characteristics in mispronunciation detection and diagnosis (MDD). The purpose of computer assisted pronunciation training (CAPT) is to help second-language (L2) learners automatically correcting the mistaken pronunciation. Computer assisted pronunciation training can be divided into mispronunciation detection and mispronunciation diagnosis. This paper mainly focuses on three aspects. First, we explore the benefits using the combined features of prosodic and phonetic characteristic in mispronunciation detection and diagnosis task. Second, we use multi-task learning models to help solving the data unbalanced problem. Last but not least, we combine likelihood-based scoring (GOP) method and classification-based scoring method in order to achieve better detection and diagnosis results. The result of experiments shows that phonetic features work better when we need to detect the mispronunciation. On the contrary, prosodic features are more helpful to mispronunciation diagnosis task.en_US
dc.description.sponsorship資訊工程學系zh_TW
dc.identifierG060547052S
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060547052S%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/106503
dc.language中文
dc.subject電腦輔助發音訓練zh_TW
dc.subject多任務學習zh_TW
dc.subject自動語音辨識zh_TW
dc.subject錯誤發音檢測zh_TW
dc.subject錯誤發音診斷zh_TW
dc.subject韻律特徵zh_TW
dc.subject深層類神經網路zh_TW
dc.subjectcomputer assisted pronunciation trainingen_US
dc.subjectmispronunciation detectionen_US
dc.subjectmispronunciation diagnosisen_US
dc.subjectacoustic modelsen_US
dc.subjectdeep neural networksen_US
dc.subjectmulti-task learningen_US
dc.subjectprosodic featuresen_US
dc.title結合韻律特徵與聲學特徵於錯誤發音檢測與診斷之研究zh_TW
dc.titleMispronunciation Detection and Diagnosis Combining Prosodic Features and Phonetic Featuresen_US

Files

Collections