Universal Gravitational Wave Parameter Estimation by Deep Learning

dc.contributor林豐利zh_TW
dc.contributorLin, Feng-Lien_US
dc.contributor.author郭瀚翔zh_TW
dc.contributor.authorKuo, Han-Shiangen_US
dc.date.accessioned2022-06-08T02:50:41Z
dc.date.available2021-08-20
dc.date.available2022-06-08T02:50:41Z
dc.date.issued2021
dc.description.abstractnonezh_TW
dc.description.abstractAs the improvement of gravitational wave detectors, gravitationalwave events become more and more popular which opens a new win-dow of astronomy. In 2017, a binary neutron star event, GW170817,has been detected through the gravitational wave and also the electro-magnetic signal. After that, people start to consider an efficient wayto detect the GW and extract its dynamics parameters. In this thesis,we construct a Bayesian inference based on deep learning machine,CVAE, for the parameter estimation of binary black hole coalescence.This machine can obtain the inference of 5-dimensional parameters ofthe GW event within one second, where the parameters are two com-ponent mass m1 , m2 , luminosity distance dL , and time and phase ofcoalescence (tc , φ0 ). Since the noise of real detectors varies from timeto time, in contract to previous CVAE envelopments, we train ourmachine not only by strain data but also the corresponding amplitudespectrum density, which is used to characterize the noise background.We find our machine can obtain the compatible result in comparisonto traditional PE algorithm even with the noise drift, which meansthe noise background varies event by event. Finally, we apply ourmachine to the LIGO/Virgo third observing run (O3) events to testthe performance of our machine against real data.en_US
dc.description.sponsorship物理學系zh_TW
dc.identifier60641018S-39973
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/7ca5070fcf1af8f573716d418032265d/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/117676
dc.language英文
dc.subjectnonezh_TW
dc.subjectGravitational waveen_US
dc.subjectGeneral relativityen_US
dc.subjectData analysisen_US
dc.subjectMatched filteren_US
dc.subjectParameter estimationen_US
dc.subjectDeep learningen_US
dc.subjectConditional variational autoencoderen_US
dc.subjectNormalizing flowen_US
dc.titleUniversal Gravitational Wave Parameter Estimation by Deep Learningzh_TW
dc.titleUniversal Gravitational Wave Parameter Estimation by Deep Learningen_US
dc.type學術論文

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
60641018S-39973.pdf
Size:
8.03 MB
Format:
Adobe Portable Document Format
Description:
學術論文

Collections