汽車空調機換裝電子膨脹閥與碳氫冷媒之研究

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

因應全球暖化與歐盟F-Gas規範等法規限制,傳統汽車主要使用的R-134a冷媒已經受到管制。因此尋求符合環保法規的替代冷媒成為當前迫切課題。本研究將傳統汽車R-134a空調系統(MACs)換裝電子膨脹閥(EEV)與碳氫冷媒(R-290與R-600a)以配合不同冷媒的飽和特性、環保法規以及提升MACs的運轉效能。MACs性能實驗是參考CNS 7897-D3079標準的環境條件與壓縮機轉速進行測試,此外增加30 ℃與40 ℃兩個外氣條件以瞭解外氣溫度對於MACs運轉性能的影響。研究結果顯示, R134a-MACs將感溫膨脹閥(TEV)換裝成EEV之後,在相同充填量(600g)的條件之下,EEV的最佳過熱度為20℃。最佳的性能係數(EER)發生在外氣溫度為40 ℃,呈現高環境溫度之下有較佳的EER。在外氣溫度為40 ℃的條件之下,壓縮機轉速在1000 rpm與1800 rpm使用EEV的EER分別比TEV高11%與7%。R134a-MACs使用EEV可以成功地換裝R-290與R-600a。R-290的最佳充填量為180 g(約R134a的30%)即可達到與R134a近似的出風溫度。換裝R290之後的最佳EER發生在外氣溫度為30 ℃,呈現低環境溫度之下有較佳的EER。在外氣溫度為30 ℃的條件之下,R290在壓縮機轉速1000 rpm與1800 rpm的EER分別比R134a高14%與27%。MACs使用EEV換裝R-600a最佳填充量為270 g (約R134a的45%),R-600a在三種外氣溫度條件下,出風溫度上升1 ℃左右,EER則提升了10%-20%。以R-134a為比較基準,使用R-290冷媒評估總當暖化影響(TEWI),運行1-8小時減少3%的排放量。使用R-600a冷媒評估TEWI,運行1-8小時減少44%的排放量。相關研究結果顯示R-600a比R-290更適合作為R-134a的替代冷媒,且能有效地達到節能與環保目的。
In response to global warming and regulatory restrictions such as the EU F-Gas Regulation, the use of R-134a—traditionally adopted in mobile air conditioning systems (MACs)—is increasingly regulated. As a result, identifying environmentally compliant alternative refrigerants has become an urgent issue. This study investigates the retrofit of conventional R-134a MACs with an electronic expansion valve (EEV) and hydrocarbon refrigerants (R-290 and R600a), to enhance system performance while meeting environmental and thermodynamic criteria.Performance testing was conducted under environmental conditions and compressor speeds specified by CNS 7897-D3079, with additional tests at outdoor ambient temperatures of 30 °C and 40 °C to examine the impact of outdoor ambient temperatures on system efficiency. Results show that replacing the thermal expansion valve (TEV) with an EEV under the same R-134a charge (600 g) yields an optimal superheat of 20 °C. The highest energy efficiency ratio (EER) occurred at an outdoor ambient temperatures of 40 °C, indicating improved performance under high-temperature conditions. At compressor speeds of 1000 rpm and 1800 rpm, EEV-equipped systems achieved EER improvements of 11% and 7% at outdoor ambient temperatures of 40 °C, respectively, compared to TEV systems.Further experiments confirmed the feasibility of substituting R-134a with R-290 and R-600a using EEVs. An optimal R-290 charge of 180 g (about 30% of R-134a's charging mass) produced comparable supply air temperatures. The highest EER for R-290 occurred at an outdoor ambient temperatures of 30 °C, with gains of 14% and 27% in EER at 1000 rpm and 1800 rpm, respectively, compared to R-134a. Similarly, retrofitting with R-600a showed that an optimal charge of 270 g (about 45% of R-134a's charging mass) resulted about 1 °C increase in supply temperature across all test conditions, and enhancing EER by 10%–20%. Using R-134a as a comparison benchmark, using R-290 refrigerant to evaluate the total equivalent warming impact (TEWI), running for 1-8 hours reduces emissions by 3%. Using R-600a refrigerant to evaluate TEWI, running for 1-8 hours reduces emissions by 44%. Related research results show that R-600a is more suitable as a replacement refrigerant for R-134a than R-290, and can effectively achieve energy conservation and environmental protection goals.

Description

Keywords

碳氫冷媒, 汽車空調機, 替代冷媒, 電子膨脹閥, Hydrocarbon refrigerants, Automotive air conditioners, Alternative refrigerants, Electronic expansion valves

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By