高職機械科學生個人創造力及其影響因素之研究-以奈米科技概念知識學習為例

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

奈米科技因為科技的發達而成為各國重要的尖端發展領域,其中人才的培育更是關鍵因素。臺灣因為優秀的技職人才,乃造就了舉世驚羨的臺灣經濟奇蹟,然面對日益激烈的國際競爭情勢,更有必要提早著手進行技職人才的科技培育工作。有鑑於此,本研究乃藉由奈米科技、學習理論、數位多媒體教材、創造力教育等相關文獻之回顧,研究者參與適合高職機械科學生專業科目學習的融入式教學法與數位多媒體教材之建構。研究樣本經立意取樣選取公立高職機械科二個班級、私立高職兩個班級為實驗組,施予融入式奈米科技概念知識揉合創造力啟發教學;而另選取公立高職機械科四個班級、私立高職二個班級為控制組,僅實施原課程科目單元之教學。研究工具乃分別就國內外相關研究量表加以選取,經原作者同意後,敦請專家學者就題意進行適當修正,引以為本研究之心理意象表徵的量測工具。實驗教學的期程分別為機械製造實施六周,合計11個單元;機械材料則進行十四周,合計29個單元的奈米科技概念知識學習揉合創造力啟發教學於99學年實施。經前測、實驗教學與後測進行研究資料的蒐集後,應用雙因子多變量變異數(two-way MONCOVA)分析及結構方程模式(structural equation modeling)為資料分析方法,進行研究資料之分析。 分析結果顯示公私立學校實驗組的創意自我效能與個人創造力分數無顯著差異;公立學校的實驗組與控制組在創意自我效能與個人創造力分數同樣無顯著差異;然私立學校的實驗組之創意自我效能與個人創造力分數則顯著優於控制組學生。再經實驗處理效果量(power)之檢定,顯示教學效果達到中等效果量。接著,依據文獻所提出的個人創造力影響因素模式,經實驗組樣本群代入模式後檢定結果顯示達到良好適配水準,使研究假設模式獲得支持,且支持班級因素、個人因素及家庭因素皆對學生的創意自我效能及個人創造力有顯著正向影響力;然控制組樣本群的檢定結果,則顯示班級因素僅能影響個人創造力,且家庭因素對於受測學生的創意自我效能及個人創造力皆不具影響力;同樣的,兩群組結構平均數差異性檢定結果,同樣支持模式分析之發現。 研究建議方面,就學術建議部分提出:1.研究量表具信效度,可資後續相關研究參考之用;2.個人創造力影響因素模式獲得良好適配,顯示模式可供教學單位進行奈米科技概念知識學習揉合創造力啟發教學參考之用。另就實務上之建議,則提出:1.奈米科技概念知識與創造力啟發之數位多媒體教材可供相關教材開發單位發展教材時的參考;2.融入式奈米科技概念知識學習揉合創造力啟發教學模式亦可供相關教學單位研擬教學模式時之參考。對未來相關研究之建議:1.可考量增加實驗場景外來變異因素之控制、單位內異質性因素之控制、新奇與干擾的影響因素、對實驗情況的反應干擾等實驗控制變項之掌控;2.可進一步探討學業成就導向班級氣氛與創造力之間的關係;3.可考量擴大樣本數,或擴大實施科別,以再驗證實驗教學效果。
Nanotechnology becomes one essential development of advanced technology in several nations due to the progress of science and technology. Taiwan’s economic miracle had been promoted by vocational talents in the past thirty years. However, it is necessary to engage in the cultivation of vocational talents earlier to face increasingly keen global competition based on increasingly keen international competition. Hence, the curriculum infused teaching methods and digital multi-media materials for vocational high school students at Department of Machinery. Researcher was participated the development of the materials that established based on the related literature review such as nanotechnology, learning theory, multi-digital materials, and creativity education. Four classes were selected frompublic and private vocational high schools respectively and were assigned to an experimental group through judgmental sampling, further. On the other hand, another four classes from public vocational high school and another two classes from private vocational high school were selected and assigned to a control group respectively. A designed package of nanotechnology concept knowledge learning and inspired teaching for creativity were used as the treatment for the experimental groups, whereas, the control groups without inspired teaching for creativity in this research. Related questionnaires from the literature review were employed as the research tool; further, the item modification was completed through an expert meeting after receiving the authorized letters from authors. The procedure of the experimental treatment includes eleven units within six weeks for the subject of Machinery Manufacturing, and twenty-nine units within eleven weeks for the subject of Mechanical Materials in the year of 2011. The research data were obtained through pre-test, inspired teaching for creativity, and post-test. Research data were collected by the questionnaire survey. The result supported that the scores of the experimental group students' creative self-efficacy and personal creativity were higher than the control group students'. Lastly, a theoretical model was approved via Structural Equation Modeling and reached a good-of-fit level. Two-way MANCOVA and Structural Equation Modeling (SEM) were used for the data analysis. The result shows that there is no significant discrepancy in the scores of creativity self-efficacy and personal creativity between the public school students and the private school students. Further, the researcher found that no significant discrepancy was in the scores of creativity self-efficiency and personal creativity between the experimental groups and the control groups in the public schools as well. However, the experimental group had the scores of creativity self-efficacy and personal creativity significantly higher than the control groups. The power examination result shows that the experimental treatment reached the medium size. According to the literature review, a developed “Affective Factor Model of Personal Creativity” had been examined through the experimental group samples and the result of a good-of-fit test supported the hypothesized model. Moreover, the result supported that the class factor, individual factor, and family factor affected creativity self-efficacy and personal creativity positively in the experimental group, while the class factor affected personal creativity only in the control group. What is more, the family factor had no effect on creativity self-efficacy and personal creativity in the control group. Meantime, the test result of two-group structural means complied with the result of model fit examination. The suggestions were made according to the research findings. In the academic term, the suggestions are: 1. the validated research tool could be applied for related researches; 2. the Affective Factor Model of Personal Creativity could be a reference for researchers in educational settings. In practice, the suggestions include: 1. the digital multi-media materials could be a reference for developers of related teaching materials; 2. the teaching model could be a reference for curriculum developers. Finally, the suggestions for future researchers are: 1. related experimental control variables, such as external variance factors in an experimental design, unit heterogeneous factors, novelty and interference factors, reaction and interference in an experimental design, should be in charge by researchers; 2. the relationship between the academic achievement-oriented classroom climate and creativity should be further explored; 3. for re-examining the contribution of the experimental teaching, increasing the sample size or involving more subjects could be carried out in the future research.

Description

Keywords

技職教育, 融入式教學法, 奈米科技, 創造力, 數位多媒體教材, vocational education, infused curriculum, nanotechnology, creativity, digital multi-media material

Citation

Collections