Please use this identifier to cite or link to this item:
Title: Application of Neural Networks on Rate Adaptation in IEEE 802.11 WLAN with Multiples Nodes
Authors: 國立臺灣師範大學電機工程學系
Chiapin Wang
Jungyi Hsu
Kueihsiang Liang
Tientsung Tai
Issue Date: 11-Jul-2010
Abstract: The paper presents an adaptive Auto Rate Fallback (ARF) scheme to improve the performance of aggregate throughput in IEEE 802.11 Wireless Local Area Network (WLAN) with multiple nodes. When the number of contending nodes increases, using ARF will be likely to degrade transmission rates due to increasing packet collisions and can consequently cause a decline of the overall throughput. In this paper we propose a neural-network based adaptive ARF scheme which improves the throughput performance by dynamically adjusting the system parameters that determine the transmission rates according to the contention situations including the amount of contending nodes and traffic intensity. The performance of our scheme is evaluated and compared with that of other LA schemes by using the Qualnet simulator. Simulator results demonstrate the effectiveness of the propose algorithm to improve the performance of aggregate throughput in a variety of 802.11 WLAN environments.
Other Identifiers: ntnulib_tp_E0612_02_010
Appears in Collections:教師著作

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.