Please use this identifier to cite or link to this item: http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/111630
Title: 外源性碳水化合物增補對運動表現及合成分解賀爾蒙之影響
Effects of Exogenous Carbohydrate Supplement On Exercise Performance and Synthetic Decomposition Hormones
Authors: 徐孟達
Hsu, Mong-Da
翁于涵
Wong,Yu-Han
Keywords: 肌糖原
蜂蜜
阻力訓練
muscle glycogen
honey
resistance training
Issue Date: 2020
Abstract: 背景:藉由外源性碳水化合物的增加,能減少內源性肌糖原的使用,讓運動時間及反覆次數增加,以提升總做功,進而提升肌肥大訓練的效益。目的:本研究旨在探討運動前與期間增補不同類型的碳水化合物,對運動表現及肌肉合成分解之效益。方法:招募11名有阻力訓練經驗之健康年輕男性,以重複量數及平衡次序設計,進行阻力訓練 (共進行3回合的硬舉、臥推、腿推蹬、坐姿划船、腿伸展、肩推等動作,前2回合各8RM,而第3回合至力竭,組間休息90秒,每個動作間則休息2分鐘) 。此外,受試者分別於訓練前10分鐘、每2個訓練動作後增補濃度為6%的碳水化合物溶液118ml (蜂蜜或葡萄糖或安慰劑) ;且於運動前立即、運動後5及20分鐘進行採血,以進行葡萄糖、胰島素、皮質醇、睪固酮、T/C ratio之濃度的檢測。結果: (1) 蜂蜜GI值為91.94。 (2) 總做功及次數:在腿伸展上,蜂蜜組顯著高於葡萄糖組及安慰劑組 (p< .05) ;在坐姿划船與總做功上,增補組顯著高於安慰劑組 (p< .05) ;在肩推的總做功上,蜂蜜組顯著高於安慰劑組,其餘皆無顯著差異。 (3) 血液指標:三組血糖皆在運動後5分鐘顯著高於前測 (p< .05) ;胰島素在運動後的時間點上,增補組皆顯著高於安慰劑組 (p< .05) ;三組睪固酮濃度在運動後20分皆顯著較運動前、運動後5分鐘低 (p< .05) ;而皮質醇則與睪固酮相反;至於在T/C ratio的變化上,葡萄糖組與安慰劑組在運動後20分鐘明顯較運動前、運動後5分鐘低 (p< .05) ,而蜂蜜組則無明顯變化。結論:在從事單次高強度肌肥大阻力訓練前與運動期間,增補蜂蜜能維持較高的血糖濃度,以供作用肌群使用,因此,能有效增加總做功量及次數。
Introduction:Increasing the exogenous carbohydrate can reduce the use of endogenous muscle glycogen, increase the exercise time and the number of repetitions, so as to increase the total work and improve the effectiveness of muscle hypertrophy training. Therefore, the purpose of this study explores the benefits of supplementing different types of carbohydrates before and during exercise on exercise performance and muscle metabolism. Method: Recruit 11 healthy young men with resistance training experience, and conduct resistance training (deadift, bench press, leg press, seated row, leg extension, shoulder press 3 set of fatigue, at 8RM, with 90 seconds between each set and 2 minutes between the exercises), and supplement with 6% 118ml carbohydrate solution (honey or glucose or placebo) every 10 minutes before training and after every 2 training movement . Blood was collected three times for each experiment, immediately before exercise, 5 minutes after exercise, and 20 minutes after exercise. The detection indexes were the concentrations of glucose, insulin, cortisol, testosterone, and T/C ratio. Results: (1) The GI value of honey was 91.94. (2) Total work and frequency: Leg extension was significantly higher in the honey group than the glucose group and the placebo group (p<.05); Seated row and Totle were significantly higher in the honey group and the glucose group than the placebo group (p< .05); totle work of shoulder press were significantly higher in the honey group than the placebo group (p< .05). (3) Blood sampling: the blood glucose of the three groups was significantly higher than the pre at 5 minutes after exercise (p< .05); at two time points after insulin, the two supplement groups were significantly higher than the placebo group ( P <.05); all three groups of testosterone were significantly higher than 20 minutes after exercise before exercise and 5 minutes after exercise (p< .05); Cortisol and testosterone were completely opposite; and the T/C ratio before exercise and 5 minutes after exercise was significantly higher than 20 minutes after exercise (p <.05), but there was no significant change in the honey group. Conclusion: Supplementing honey before and during a single high-intensity resistance training could maintain a high blood glucose concentration for the use of muscle groups. Therefore, it could effectively increase the total work amount and frequency.
URI: http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060630065A%22.&
http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/111630
Other Identifiers: G060630065A
Appears in Collections:學位論文

Files in This Item:
File SizeFormat 
060630065a01.pdf2.14 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.