阻力訓練與有氧運動的訓練量對身體組成與脂肪激素的影響
No Thumbnail Available
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
前言:脂肪激素在人體健康上扮演重要角色,因而受到重視。過去研究已探討阻力訓練與有氧運動對脂肪激素的影響,但將訓練量加以定量的研究極少,且造成二種運動模式有所差異的相關生理機轉亦尚未明朗。目的:探討不同訓練量的阻力訓練與有氧運動對身體組成和脂肪激素的影響。方法:53名沒有運動習慣的中年肥胖男性 (30-44歲) 配對後隨機分成5組,分別為高阻力組 (HRT)、低阻力組 (LRT)、高有氧組 (HAE)、低有氧組 (LAE) 與控制組 (CON),以WER法定量不同運動模式的訓練後,分別以不同的訓練量進行阻力訓練或有氧運動,訓練期8週,每週3次;控制組維持日常生活即可。阻力訓練包含胸部水平推舉、捲腹、腿部推舉與肱二頭肌彎舉等4個動作,有氧運動則以跑步進行。每4週檢測身體組成與採集血液。分析指標為身體組成(體重、BMI、腰臀圍、肌肉量、脂肪量、體脂率、去脂體重、肌肉脂肪比)、脂肪激素(脂締素、瘦體素與C反應蛋白)、冠心病相關因子(總膽固醇、三酸甘油脂、高密度脂蛋白膽固醇)與肌肉合成激素(生長激素、1型類胰島素生長因子、睪固酮、胰島素)。統計方法以混合設計二因子變異數分析和LSD法進行訓練時間與運動模式的考驗,顯著水準訂為 p<.05。結果:身體組成方面,HAE、LAE的體重顯著下降,且HAE的改變量顯著高於CON;LRT、HAE、LAE的BMI顯著下降。所有運動組的腰圍、臀圍皆顯著下降,且改變量都顯著高於CON。LRT、HAE的體脂率、脂肪量顯著下降,肌肉脂肪比則顯著上升,且兩組的改變量均顯著高於CON。HAE、LAE的組織量顯著下降,且HAE的改變量顯著高於CON。肌肉量、去脂體重與骨礦含量沒有變化。脂肪激素方面,HRT的脂締素濃度在四週和八週後顯著下降。LRT與HAE訓練後的瘦體素濃度明顯下降,且HAE對瘦體素濃度的改善較佳,C反應蛋白則沒有變化。冠心病因子和肌肉合成激素不受訓練時間和運動模式的影響。結論:中年肥胖男性在八週訓練後,有氧運動和阻力訓練均有改善身體組成的效果,其中以高訓練量的有氧運動效果為最佳。同樣的,高訓練量的有氧運動對瘦體素的改善亦最大,可以作為設計運動處方的考量,而高訓練量的阻力運動可能導致脂締素濃度下降,坐式生活者進行阻力訓練應以低訓練量為適宜。
關鍵詞:脂肪組織、阻力訓練、有氧運動、訓練量
Introduction: Adipokines got attention because it play an important role in human health. Past research has explored the impacts of resistance training (RT) and aerobic exercise (AE) on adipokine. However, quantitative research for the training volume of these two training types is limited. Also, mechanisms of training-induced physiological adaptation between RT and AE are not yet clear. Purpose: To examine the effects of different RT and AE training volumes on body composition and adipokines. Methods: Fifty-three (53) middle-aged obese men (30-44 yr) were paired and randomly assigned into 5 groups, including HRT, LRT, HAE, LAE and CON. The Work Endurance Recovery (WER) method was used to quantify exercise volume for different modes of exercise training. The subjects were trained by RT or AE with high and low training volume respectively for eight weeks, three times per week. The subjects in the CON group were asked to maintain sedentary lifestyle. The RT training movements included chest press, arm curl, leg press and abdominal curl. For the AE training group, subjects were trained by jogging. Blood samples and body composition data were collected every four weeks for subsequent analysis. The analysis included adipokines, body composition, coronary heart disease factors and muscle synthesis hormones. A mixed design two way ANOVA with LSD post hoc test were used to compare the differences with training time points and exercise types. The significant level was set at p<.05. Results: On body composition, body weight of HAE and LAE decreased significantly, and the percentage difference of HAE was significantly higher than that of CON. BMI of LRT, HAE and LAE decreased significantly. The waist and hip circumferences of all exercise groups decreased significantly, and the percentage difference was significantly higher than CON. Body fat percentage and fat mass of LRT and HAE decreased significantly, and muscle-fat mass ratio increased significantly, and the percentage differences in both groups were significantly higher than CON. The tissue mass of HAE and LAE decreased significantly, and the percentage difference of HAE was significantly higher than CON. There was no change in muscle mass, fat-free weight and bone mineral content. In terms of adipokine, the concentration of adiponectin in HRT decreased significantly after four and eight weeks of training. The concentration of leptin in LRT and HAE decreased significantly after training, and the percentage difference of leptin in HAE was favorably better than that of LRT. C-reactive protein did not change. Coronary heart disease factors and muscle synthetic hormones were not affected by either different training durations or exercise types. Conclusions: Following eight weeks of training, middle-aged obese men have significant improvements on body composition in both aerobic exercise and resistance training groups. Specifically, high training volume aerobic exercise can bring more beneficial impacts than the other training modes. As to blood adipokines, high training volume aerobic exercise had the greatest improvement in leptin, which can be considered as exercise prescriptions. The high training volume resistance exercise induced a decreased in blood adiponectin. Therefore, resistance training with low training volume could be an ideal exercise model for sedentary obese population. Key words: adipose tissue, resistance training, aerobic exercise, training volume
Introduction: Adipokines got attention because it play an important role in human health. Past research has explored the impacts of resistance training (RT) and aerobic exercise (AE) on adipokine. However, quantitative research for the training volume of these two training types is limited. Also, mechanisms of training-induced physiological adaptation between RT and AE are not yet clear. Purpose: To examine the effects of different RT and AE training volumes on body composition and adipokines. Methods: Fifty-three (53) middle-aged obese men (30-44 yr) were paired and randomly assigned into 5 groups, including HRT, LRT, HAE, LAE and CON. The Work Endurance Recovery (WER) method was used to quantify exercise volume for different modes of exercise training. The subjects were trained by RT or AE with high and low training volume respectively for eight weeks, three times per week. The subjects in the CON group were asked to maintain sedentary lifestyle. The RT training movements included chest press, arm curl, leg press and abdominal curl. For the AE training group, subjects were trained by jogging. Blood samples and body composition data were collected every four weeks for subsequent analysis. The analysis included adipokines, body composition, coronary heart disease factors and muscle synthesis hormones. A mixed design two way ANOVA with LSD post hoc test were used to compare the differences with training time points and exercise types. The significant level was set at p<.05. Results: On body composition, body weight of HAE and LAE decreased significantly, and the percentage difference of HAE was significantly higher than that of CON. BMI of LRT, HAE and LAE decreased significantly. The waist and hip circumferences of all exercise groups decreased significantly, and the percentage difference was significantly higher than CON. Body fat percentage and fat mass of LRT and HAE decreased significantly, and muscle-fat mass ratio increased significantly, and the percentage differences in both groups were significantly higher than CON. The tissue mass of HAE and LAE decreased significantly, and the percentage difference of HAE was significantly higher than CON. There was no change in muscle mass, fat-free weight and bone mineral content. In terms of adipokine, the concentration of adiponectin in HRT decreased significantly after four and eight weeks of training. The concentration of leptin in LRT and HAE decreased significantly after training, and the percentage difference of leptin in HAE was favorably better than that of LRT. C-reactive protein did not change. Coronary heart disease factors and muscle synthetic hormones were not affected by either different training durations or exercise types. Conclusions: Following eight weeks of training, middle-aged obese men have significant improvements on body composition in both aerobic exercise and resistance training groups. Specifically, high training volume aerobic exercise can bring more beneficial impacts than the other training modes. As to blood adipokines, high training volume aerobic exercise had the greatest improvement in leptin, which can be considered as exercise prescriptions. The high training volume resistance exercise induced a decreased in blood adiponectin. Therefore, resistance training with low training volume could be an ideal exercise model for sedentary obese population. Key words: adipose tissue, resistance training, aerobic exercise, training volume
Description
Keywords
脂肪組織, 阻力訓練, 有氧運動, 訓練量, adipose tissue, resistance training, aerobic exercise, training volume