地球科學系(含 海洋環境科技研究所)

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/59

本系設立的宗旨,首在養成學生具備地球科學五大學術領域–地質學、大氣科學、海洋科學、天文學和地球物理–充分之本職學能;本系的教育目標,則首重致力培養有志從事地球科學之專精人才,以培育優秀之地球科學研究人才和實務工作的專業人才為主軸,並以培養優良的中學地球科學師資為輔。特別是在國內各地球科學相關系所中,本系是唯一同時涵蓋五大地球科學研究領域,並擁有師範大學在科學教育專業基礎的高等學術機構,此為本系之特色。若志在從事中等學校地科教學,本系亦可提供地科教學知能和教育專業知識,充分培育健全之地球科學師資。

在課程上,為營造更優質的學習與研究環境,本系已適度調整原以師資培育目標為主的舊有課程架構,整合各地球科學次領域之基礎課程,降低本系必、選修課程之比例,大幅減少各次領域之必修課程學分,以增加學生在各次領域課程選修之自由度及彈性,進而充分落實各次領域之專業進階課程。此外本系並積極鼓勵學生,實際參與實驗、撰寫論文、從事專題計畫研究等,以豐富其研究經驗,訓練學生使其具備獨立研究之精神與能力。經由選修本系提供之更多進階專業課程,進而厚植學生之理論基礎、充實其專業背景,並強化其選定目標次領域之學術養成和專業訓練;連同充足的研究經驗,本系學生的未來發展,將更具時代性與面對挑戰時的競爭力,進一步達到「博而精、廣而深」的終極目標。近來本系更積極增聘優秀外籍專任師資,以全英語教學方式授課,期能增加學生之國際觀與國際競爭力。

本系在碩、博士班研究所的教育上,採一系多所之架構,除地球科學研究所外,還包括海洋環境科技研究所。本系研究所的研究重點與發展方向,首在地球科學各領域之深耕與研究發展,並加強各次領域間之跨學門合作,以進一步提升本系之學術研究及國際化,並為本系學生的訓練和學習,提供全面全方位的考量,以訓練學生從容面對多變的世界,因應未來的挑戰。

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    國小學童認知結構發展分析:以探究式教學為例
    (2008) 黃昭銘; Chao-Ming Huang
    Understanding how people think, organize and develop knowledge is an important issue for educational researchers. Recently, relevant research revealed the connections between cognitive structures and information processing strategies. The research of metacognition also indicated that the metacognition was related to individual’s learning outcomes. Moreover, it revealed that the relationship between metacognition and information processing was significant. This study tried to explore the development of cognitive structure, including the indicators of extent and richness. Besides, the application of metacognitive regulation strategies, including selecting, short-term maintaining, long-term maintaining, updating and rerouting, were explored. Additionally, the usage of information processing strategies, including defining, describing, comparing, conditional inferring and explaining, were also investigated. This study also investigated the effect of instructional modes in these indicators. Besides, this study also tried to construct a convenient questionnaire, Pupils MetaCognition Scale (PMCS), for understanding pupils’ metacognition. This study interviewed 110 Taiwanese elementary students (the sixth graders), who came from four different classes. Two classes were categorized into an experimental group (inquiry instructional mode, n=54) and two classes were categorized into a control group (traditional instructional mode, n=56).According to students’ science achievement, each group of students was categorized into three different achiever groups, including the high achiever group, the middle achiever group and the low achiever group. The interaction between instructional modes and different achiever groups was presented. Data collection covered three different units, including bicycle unit, rust-proof and decay-proof unit, and energy and eco-conservation. The role of knowledge domain was also discussed in this study. The result revealed that the PMCS outcomes were related to the cognitive structure, metacognitive regulation strategies and information processing strategies. The PMCS questionnaire provided a convenient tool in the exploration of metacognition. Besides, the finding also revealed that the flow map method could be extended its potential function and offered for further applications. Besides, this study revealed that the relationship between information processing and metacognitive regulation was significant. This study suggested that the inquiry instructional mode could enhance students’ application of higher-rank strategies in learning, including updating strategy, rerouting strategy, conditional inferring strategy and explaining strategy. The finding indicated that different achiever groups used different strategies in learning. The high achievers outperformed in higher-order strategies, including richness, updating strategy, rerouting strategy, conditional inferring strategy and explaining strategy. The middle achievers used the strategies more frequently than the low achievers; for example, extent, selecting and long-term maintaining. Moreover, it revealed that the interaction between instructional modes and achievement was significant in the indicator, including richness, short-term maintaining strategy and rerouting strategy, especially for the high achievers. This study also explored the role of knowledge domain. According to the findings, it revealed that the effect of knowledge domain was significant across all twelve indicators. The content of instructional activities would influence the connections between prior knowledge and scientific knowledge. The findings also highlighted the importance of prior knowledge. The interaction between knowledge domain and achievement was significant in higher-rank strategies, including richness, updating, rerouting, conditional inferring and explaining. The findings suggested that the students’ learning outcomes mainly depended on students’ academic achievement, application of metacognitive regulation strategies and information processing strategies. It also revealed that different instructional modes, knowledge domain and content of instructional activities influenced students’ performance on their cognitive structures, the usage of metacognitive regulation strategies, and information processing strategies.
  • Item
    探討後設認知引導策略對學生探究能力與概念改變的影響
    (2010) 張文馨; Jhang,Wun-Sin
    本研究主要目的是要探討國中三年級學生在後設認知引導策略引導下,科學探究能力與四季成因概念的改變情形。研究對象為兩班共51名國三學生,一班施予有後設認知引導策略融入的四季成因課程,另一班則施予無後設認知引導策略融入的四季成因課程。於課程實施期間收集問卷、測驗以及學習單等多項資料,分析學生經歷課程後在科學探究能力、四季成因概念以及後設認知的表現情形。資料分析結果顯示,有後設認知引導策略引導的學生其科學探究能力的進步情形顯著優於無後設認知引導策略引導的學生(F=7.95,p<0.04),而探究活動學習單的內容分析也進一步證實,藉由後設認知引導策略的協助,學生較能提出於合乎研究問題的預測、較能說出引用哪些圖表的資料來進行分析,也較能具體陳述數據資料呈現的趨勢分布以及其與研究問題之間的關聯性,並能應用先前學過的知識對數據趨勢與科學模式間做出合理的解釋;而全體學生在四季成因概念的學習均有顯著進步(實驗班:t=4.44,p<0.05;對照班:t=3.67,p<0.04),分析學生另有概念類型數目的轉變顯示有後設認知引導策略引導的學生,另有概念減少的數目比無後設認知引導策略引導的學生多;全體學生經課程後,在後設認知上均沒有顯著進步(F=0.02,p>0.04);而進一步比較不同後設認知的學生對科學探究能力學習成效的影響發現,藉由後設認知引導策略,能有效縮小學生因為後設認知的不同在學習成效所產生的差異。即是,經由後設認知引導策略的引導能協助低後設認知的學生,使他們的表現更接近高後設認知的學生。
  • Item
    運用線上測驗評估電腦輔助教學成效
    (2006) 陳怡君; Yi-Chun Chen
    本研究旨在編製以土石流為主題的線上「領域特定知識測驗」(Domain-Specific Knowledge Test, DSKT)、「推理能力測驗」(Reasoning Skills Test, RST)及「態度測驗」(Attitudes Test, AT),藉由此三項測驗及由半結構式晤談編碼轉換的後設認知量化資料和質性資料,探討學生在「以問題解決為基礎之土石流CAI電腦輔助教學軟體」(董家莒、張俊彥,1999)課程後之學習成效。 研究設計採準實驗研究法,以彰化縣某國立高中一年級地球科學之學生為研究對象(n=36)。學生在接受「DSKT」、「RST」、「AT」線上測驗前測後,研究者選取班上一半人數(n=20)且男女各半進行前晤談,之後才進行「以問題解決為基礎之土石流CAI電腦輔助教學軟體」課程,課程結束後隔週再次進行「DSKT」、「RST」、「AT」線上測驗後測,在後測後同樣選取之前晤談的學生進行課程後晤談。在蒐集研究資料後,以敘述性統計(descriptive statistics)、皮爾遜積差相關(Pearson product-moment correlation)、相依樣本t考驗(paired samples t-test)、單因子變異數分析(one-way analysis of variance, ANOVA)等統計方法,描述「量」方面的研究結果,並輔以「質」的資料,作出適切的討論。研究結果顯示: 1.DSKT、RST、AT前測皆與總分成中至高度顯著相關,但彼此之間相關性為低度且未達顯著。意謂DSK、RS、AT可能分別代表問題解決不同的三個分量,且與先前的研究符合,因此未來在地球科學上的問題解決能力,應該可以藉由學生在DSK、RS、AT的線上測驗表現來代表。 2.經歷過CAI土石流電腦輔助課程的全部學生,在領域特定知識有顯著的提升,且達到大的效果量,而全體學生的推理能力與態度沒有達到統計上的顯著進步或退步。女生比男生容易藉由此課程及該授課方式提升推理能力,並達到中至大的實際顯著程度。但無論在DSKT、RST、AT線上測驗的前測、後測及後設認知或第一次段考成績上,沒有存在顯著的男女間差異。 3.前測中,DSKT與RST相關性很小且未達到顯著,但在後測表現上達顯著的中至高度正相關,代表在課程後在領域特定知識上表現較好的學生,在推理能力的問題上也能獲得較好的表現,意即提升領域特定知識的同時,推理能力後測的表現亦同時提升。 4.RST成效(後測與前測差值)與後測之DSKT、RST、AT三分項測驗皆呈中至高度的顯著相關,代表在DSK、RS、AT後測表現較好的學生在推理能力上也有較好的學習成效。 5.本研究使用晤談法,以學生對整個學習過程(包含前後測及課程)之反思作為分析後設認知表現的依據,分析晤談內容後發現,「指標N1正向且具體回饋的次數」越多,則在「指標N2 無概念或態度取向的非具體回答回饋次數」及「指標N2 無法說明或負面回饋次數」越少,此結果代表高後設認知能力者,較不會回答負面或無概念及態度取向的回答,而後設認知表現較差者(即無法說明或負面回饋次數多),在無概念及態度取向回答的次數也較多,其間有顯著正相關的關係存在。 6.後設認知指標表現愈佳的學生在RST無論是前測或後測愈能有好的表現,其間相關達顯著高度正相關,相對的,後設認知指標表現愈差者在RST前測、後測表現上也表現愈差,且RST成效(後測與前測差值)也愈低,達中至高度的顯著相關。除了在後設認知指標表現差者的DSKT後測也較差外,後設認知與DSKT前測、AT前後測、第一次段考成績則皆無達到統計上的顯著相關,因此發現「後設認知」與問題解決能力三項度中的「推理能力」較為相關。 7.本研究尚藉由晤談所得之質性資料對線上測驗給予設計的建議,及整理出學生在土石流課程後仍易混淆的概念供教師參考。