地球科學系(含 海洋環境科技研究所)

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/59

本系設立的宗旨,首在養成學生具備地球科學五大學術領域–地質學、大氣科學、海洋科學、天文學和地球物理–充分之本職學能;本系的教育目標,則首重致力培養有志從事地球科學之專精人才,以培育優秀之地球科學研究人才和實務工作的專業人才為主軸,並以培養優良的中學地球科學師資為輔。特別是在國內各地球科學相關系所中,本系是唯一同時涵蓋五大地球科學研究領域,並擁有師範大學在科學教育專業基礎的高等學術機構,此為本系之特色。若志在從事中等學校地科教學,本系亦可提供地科教學知能和教育專業知識,充分培育健全之地球科學師資。

在課程上,為營造更優質的學習與研究環境,本系已適度調整原以師資培育目標為主的舊有課程架構,整合各地球科學次領域之基礎課程,降低本系必、選修課程之比例,大幅減少各次領域之必修課程學分,以增加學生在各次領域課程選修之自由度及彈性,進而充分落實各次領域之專業進階課程。此外本系並積極鼓勵學生,實際參與實驗、撰寫論文、從事專題計畫研究等,以豐富其研究經驗,訓練學生使其具備獨立研究之精神與能力。經由選修本系提供之更多進階專業課程,進而厚植學生之理論基礎、充實其專業背景,並強化其選定目標次領域之學術養成和專業訓練;連同充足的研究經驗,本系學生的未來發展,將更具時代性與面對挑戰時的競爭力,進一步達到「博而精、廣而深」的終極目標。近來本系更積極增聘優秀外籍專任師資,以全英語教學方式授課,期能增加學生之國際觀與國際競爭力。

本系在碩、博士班研究所的教育上,採一系多所之架構,除地球科學研究所外,還包括海洋環境科技研究所。本系研究所的研究重點與發展方向,首在地球科學各領域之深耕與研究發展,並加強各次領域間之跨學門合作,以進一步提升本系之學術研究及國際化,並為本系學生的訓練和學習,提供全面全方位的考量,以訓練學生從容面對多變的世界,因應未來的挑戰。

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    颱風數目年代際變化生成指數發展
    (2023) 劉亦宸; Liu, I-Chen
    西北太平洋(WNP)颱風生成數(NTC)具有年代際變化的現象,而颱風的生成會受大尺度環境場的影響,前人依此關係發展出颱風生成指數(GPI),但無法掌握到NTC年代際變化現象。因此本研究以Murakami and Wang(2010)的 GPI 及Wang and Murakami(2020)DGPI 指數中的環境參數為基礎,利用高解析度CMIP6 HighResMIP 資料與主成分迴歸分析(PCR),發展出能掌握在 WNP 區 NTC年代際變化的 GPI 。 本研究發現,夏季時多數模式能模擬到 NTC 年代際變化的現象,但在 TC 突變的模擬上和觀測結果並不一致。秋季時,海氣耦合模式的年代際變化、突變模擬上比大氣模式好。模式中以 HadGEM3-GC31-HM 的海氣模式結果與觀測最接近。在兩時期 TC 生成的空間分布差異上,大氣模式的分布和觀測不符甚至相反,而海氣模式在TC多的位置與觀測相符,不過對活躍期數量較少的西北區域較無法掌握。在相關性分析結果上,海氣模式的結果也比大氣模式接近觀測值,且呈現正相關,大氣模式則為負相關。 藉由探討 NTC 變化與大尺度環境變化的關係,我們發現在活躍期,有利於 TC 生成的大尺度環境分布情況,會與自身 TC 生成較多的區域相對應。兩時期生成指數差異的結果顯示,觀測上 Murakami and Wang(2010)的 GPI 總值變化與實際的 NTC 變化相反,未能掌握非活躍期 NTC 大幅減少的特徵。 本研究發展的新 GPI 指數(NGPI),雖然選取的環境參數與原有的 GPI 接近,但大多數以年代際變化明顯的 PC2 、 PC3 居多,尤其是在夏季。 NGPI 與原 GPI最大的不同是,夏天 NGPI 沒有絕對或相對渦度項,在動力因素上,只採用ω項、垂直風切項;在熱力因素上,只採用相對濕度 PC2 、 PC3 。秋天的 NGPI ,在動力因素上,則選用相對渦度項和垂直風切項,在熱力因素上,只採用相對濕度 PC1 。因此,在建立年代際變化新的 GPI 時,考慮不同季節選用不同的環境參數,對於不同季節 NTC 年代際變化的掌握會更好。
  • Item
    東太平洋間熱帶輻合帶的年際與年代際變化
    (2011) 施明甫; SHIH, MING-FU
    熱帶海洋地區有許多對流發展,稱為間熱帶輻合帶(Intertropical convergence zone;簡稱ITCZ)。其中的東南太平洋間熱帶輻合帶(Southeast Pacific intertropical convergence zone;簡稱SITCZ)位於東太平洋赤道南方,每年2~4月才會發展對流系統。分析顯示,東太平洋赤道北方的間熱帶輻合帶(簡稱NITCZ)和SITCZ的3~4月強度有年代際變化,由於赤道南方的海表面溫度(Sea surface temperature;簡稱SST)在1982年以後大幅上升,有利對流發展,且也使負值SST南北向梯度加強,導致原本的東南風減弱較多,而使SITCZ的輻合增強。NITCZ則因為對應SST原 本已高,SST略增對於對流強度增強沒有明顯幫助。年際變化方面,本研究先分析El Nino/Southern Oscillation(簡稱ENSO)對ITCZ的影響,發現強聖嬰年時,高SST是影響對流發展的主因。而SITCZ在強反聖嬰年,因為強的SST梯度會使輻合動力機制提前於2月發生,使SITCZ於3~4月能夠顯著發展。另外在研究的分析中也顯示SITCZ區域的SST並非影響SITCZ強度的唯一機制。利用高解析度資料分析,當NITCZ區域的SST在北半球冬季及春季較高時,3~4月的NITCZ可以維持較強強度,進而利用動力機制壓抑赤道南邊的SITCZ環流,使SITCZ較弱;反之若NITCZ區域的SST在南半球夏季及秋季較低溫時,3~4月的NITCZ則會明顯減弱,動力機制壓抑赤道南邊SITCZ的情形相對不明顯,因此SITCZ會較強。
  • Item
    秋強颱年代際變化之探討
    (2007) 李佳容; Chia-Jung Lee
    本研究分析過去62年(1945~2006年)西北太平洋地區颱風活動之年代際(Interdecadal)變化,發現經過十一年滑動平均後,秋強颱呈現明顯的年代際變化,秋強颱活躍期(1990~1994年)颱風生成個數較多,且發展成強颱的比率(Ratio of strong typhoon, RST)較高,達33.8%,秋強颱非活躍期(1974~1978年)則相反,其RST僅19.6%。西北太平洋地區秋強颱活躍與否,和西北太平洋海溫較無明顯相關,反而強烈受到中~東太平洋地區海溫之影響。活躍期中~東太平洋海溫高,暖水厚度大,秋颱生成區向東南延伸至國際換日線一帶,生命期較長,非活躍期反之,秋颱均形成在160°E以西的區域,生命期較短。活躍期中~東太平洋暖海溫伴隨較高的環境水汽含量值,於暖水團的西北側低對流層出現氣旋式異常環流,高對流層出現反氣旋式異常環流,垂直風切減小,有利強烈颱風的生成與發展。 本文進一步藉由IPCC-AR4海氣耦合模式20C3M資料與現今實際觀測資料作比對,探討全球暖化後秋強颱強度變化的趨勢,顯示高解析度模式年代際變化大致和觀測相似,其變化趨勢和振幅相仿,可作為預測與秋強颱參考的指標。
  • Item
    東亞夏季季風降雨指數和台灣降雨年代際變化
    (2007) 陳育婷
    本文採用一個東亞夏季季風指數—SEAM來表示夏季季風降雨的強度,接著利用中央氣象局1950~2005年之台北、台中、台南、高雄、花蓮、台東等六個測站的日累積雨量,分別計算5~6月和7~9月之豪雨次數、大雨次數、月雨量,再和SEAM作相關分析,我們發現台灣六個測站的降雨和東亞夏季季風的相關性很低,代表影響台灣5~9月降雨的因素非夏季季風一項。 為了討論東亞夏季季風的年代際變化,我們將SEAM作11年滑動平均,定義為R-SEAM,選取R-SEAM較高的10年為季風年代際變化活躍年(1973~1982年),較低的10年為季風年代際變化不活躍年(1990~2000年),再和台灣測站資料的11年滑動平均作相關,在季風年代際變化活躍年的5~6月,西部測站的豪大雨次數、月雨量會較多,而花蓮的豪大雨次數、月雨量會較少;到了7~9月,東部的月雨量較少,西部測站除了高雄以外,豪大雨次數、月雨量卻變少了,和5~6月相反。 在大尺度環流上,季風年代際變化活躍年和不活躍年也有不同之處:在季風年代際變化活躍年的5~6月,太平洋副高減弱且位置較偏東、高層的南亞高壓增強且偏西北方;在季風年代際變化活躍年的7~9月,太平洋副高向北退、跨赤道流明顯增強、高層的南亞高壓也是較強且偏西北方。
  • Item
    印度降雨變異之研究
    (2019) 黃寶緯; Huang, Pao-Wei
    過去許多研究指出,印度地區降雨現象主要受到亞洲夏季季風所影響,鮮少討論低頻時間尺度上的變化,如年代際變化(decadal variations)。然而印度地區在年代際上的降水變化有機會造成重大災情,因此在降水變異的研究上不能僅局限於季節(seasonal)或年際(inter-annual)上的變化,了解印度地區降水在年代際變化有助於我們提早應變可能發生的災害。 本文主要研究1979年至2015年觀測資料GPCP在印度地區的降水變化,發現有一明顯年代際尺度的降水變異,並進一步利用多元線性迴歸分析發現,這與南半球氣候主要模態之一的南半球環狀模式(Southern Hemisphere Annular Mode, SAM)的變化有著密切的關係。為了進一步了解SAM影響印度地區降水的過程,我們利用簡單線性迴歸分析探討南半球氣候變異如何改變印度的降雨。研究結果顯示,當SAM為正相位時,南半球海表溫度在副熱帶地區為正異常,在中緯度為負異常,而這樣的海表溫變化會造成大氣經向環流的減弱,導致低雲覆蓋率在印度洋上減少,在亞洲大陸東、南側增加,進而改變地表淨熱通量,使得海陸溫差變大,造成向北跨赤道風增強,因此為印度地區帶來豐沛的雨量。