地球科學系(含 海洋環境科技研究所)

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/59

本系設立的宗旨,首在養成學生具備地球科學五大學術領域–地質學、大氣科學、海洋科學、天文學和地球物理–充分之本職學能;本系的教育目標,則首重致力培養有志從事地球科學之專精人才,以培育優秀之地球科學研究人才和實務工作的專業人才為主軸,並以培養優良的中學地球科學師資為輔。特別是在國內各地球科學相關系所中,本系是唯一同時涵蓋五大地球科學研究領域,並擁有師範大學在科學教育專業基礎的高等學術機構,此為本系之特色。若志在從事中等學校地科教學,本系亦可提供地科教學知能和教育專業知識,充分培育健全之地球科學師資。

在課程上,為營造更優質的學習與研究環境,本系已適度調整原以師資培育目標為主的舊有課程架構,整合各地球科學次領域之基礎課程,降低本系必、選修課程之比例,大幅減少各次領域之必修課程學分,以增加學生在各次領域課程選修之自由度及彈性,進而充分落實各次領域之專業進階課程。此外本系並積極鼓勵學生,實際參與實驗、撰寫論文、從事專題計畫研究等,以豐富其研究經驗,訓練學生使其具備獨立研究之精神與能力。經由選修本系提供之更多進階專業課程,進而厚植學生之理論基礎、充實其專業背景,並強化其選定目標次領域之學術養成和專業訓練;連同充足的研究經驗,本系學生的未來發展,將更具時代性與面對挑戰時的競爭力,進一步達到「博而精、廣而深」的終極目標。近來本系更積極增聘優秀外籍專任師資,以全英語教學方式授課,期能增加學生之國際觀與國際競爭力。

本系在碩、博士班研究所的教育上,採一系多所之架構,除地球科學研究所外,還包括海洋環境科技研究所。本系研究所的研究重點與發展方向,首在地球科學各領域之深耕與研究發展,並加強各次領域間之跨學門合作,以進一步提升本系之學術研究及國際化,並為本系學生的訓練和學習,提供全面全方位的考量,以訓練學生從容面對多變的世界,因應未來的挑戰。

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    中國西南攀枝花火成雜岩之實驗岩石學研究-關於鐵-鈦-釩氧化 礦床成因
    (2016) 陳氏緣; Tran, thi-duyen
    The Late Permian Panzhihua layered gabbroic intrusion of SW China hosts one of the largest magmatic Fe-Ti-V oxide deposits within the Emeishan large igneous province and is coeval with a peralkaline granitic pluton. The largest oxide ore body is found at the base of the intrusion, which is unlike other layered intrusions where the Fe-Ti oxide deposits are located in the uppermost portions. This study attempts to model the genesis of the Panzhihua layered intrusion, including the formation of the ore deposit by reconstructing the crystallization sequence of minerals from low and high-pressure experiments. The starting composition used for the experiment is similar to high-Ti Emeishan basalt that resembles the theoretical parental composition of the Panzhihua intrusion. The low-pressure experiments were conducted between 1312oC and 1102oC. The first mineral to crystallize is Cr-rich titanomagnetite at 1274oC. Following Cr-rich titanomagnetite are: Fe-Ti oxides (ilmenite+titanomagnetite); clinopyroxene (Wo39-52En39-47Fs8-16) at 1188oC; plagioclase (An67-41) and orthopyroxene (Mg# = 93-95) at 1162oC. The compositional range of clinopyroxene and plagioclase matches those measured from the rock of the Panzhihua intrusion. The high-pressure experiments occur between 1240oC and 1050oC. Iron-titanium oxide and clinopyroxene (Wo23-48En37-58Fs10-22) appear together as the first phases at 1180oC. The sequence is followed by orthopyroxene at 1100oC and plagioclase (An61-37) at 1050oC. The experiment results indicate that the early crystallization sequence of the parental magma is dominated by Fe-Ti oxide and partially explain why the largest oxide ore deposit of the Panzhihua intrusion is found in the lowermost layers. The low temperature residual glass compositions in both experiments are enriched in SiO2, Al2O3, Na2O and K2O; and depleted in TiO2, FeOt, MgO and CaO. However, minerals crystallize at relatively low temperature in the high-pressure and consequently have less silicic (SiO2 ≈ 61 wt%) residual glass composition than that of the low-pressure experiment (SiO2 ≈ 72 wt%). The similarity between Panzhihua granite and low-pressure residual glass suggests that the Panzhihua intrusion probably formed at shallow depth. Furthermore, the liquid-crystal evolution constructed from the low-pressure experiment show that a parental magma similar to high-Ti Emeishan basalt can produce an early enrichment of oxide minerals and a silicic residual liquid via fractional crystallization. Keywords: Panzhihua, Fe-Ti-V oxide deposits, experimental petrology