理學院
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3
學院概況
理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。
特色理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。
理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。
在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。
在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。
Browse
22 results
Search Results
Item 芬普尼及酸性水的暴露對於斑馬魚胚胎發育及離子調節之影響(2022) 彭元廷; Peng, Yuan-Ting人類活動引發的淡水酸化已成為全球性的問題,並且已對水生動物構成嚴重的威脅,而酸性水可能會增加水中污染物對水生動物的毒性。芬普尼 (fipronil)是一種苯基吡唑類殺蟲劑,目前廣泛使用於農業活動和寵物用藥。先前的研究表明,芬普尼的殘留物會對魚類造成多種毒性作用。然而,目前尚不清楚芬普尼是否會損害魚類的離子調節及酸化水是否會增強芬普尼的毒性。在這項研究中,斑馬魚胚胎被當成模式動物來回答這些問題。從受精後 4 小時開始,斑馬魚胚胎暴露在不同濃度 (0、0.1、0.5、1、5 和 10 ppm)的芬普尼中 96 小時。芬普尼以劑量依賴性的方式增加死亡率並延遲孵化。 芬普尼 (≧ 1 ppm) 的毒性亦使得身體及肌節的長度、眼睛、耳石囊和嗅窩的面積都與控制組相比呈現下降。此外,芬普尼還降低了側線毛細胞及皮膚離子細胞 (包括 HR 細胞和 NaR 細胞)的數量以及相關的離子調節功能。在酸性水 (pH5) 中,芬普尼導致離子細胞酸分泌的功能更嚴重地下降。這項研究首次表明芬普尼可以損傷皮膚離子細胞並威脅魚類在酸性環境中的生存。Item 以斑馬魚為動物模式研究奈米金屬對離子細胞之毒性(2021) 李致穎; Lee, Chih-Ying在21世紀,奈米科技快速發展,應用廣泛,而這也同時增加了人類接觸各種不同奈米顆粒的機會,因此針對其毒性的研究,也相形越來越重要。而其中,金屬奈米顆粒對於魚類離子細胞的潛在毒性仍未有充分的研究。本篇研究是以斑馬魚胚胎為動物模式,探討奈米銀和奈米銅對斑馬魚胚胎皮膚上的離子細胞功能之毒性作用。實驗方式是將斑馬魚的胚胎分別浸泡於奈米銀和奈米銅96小時(受精後4〜100小時(hpf))後,檢測其全身離子含量及皮膚上離子細胞的數量和功能。暴露於奈米銀96小時後,全身Na離子和K離子含量在奈米銀濃度為3 mg/L組別中顯著下降,而Ca離子含量在濃度 ≥ 0.1 mg/L時下降。以Scanning ion-selective electrode technique(SIET)檢測胚胎皮膚的H離子分泌功能,發現在3 mg/L時功能顯著降低。以rhodamine 123(粒線體標記)來標記離子細胞,其密度在1和3 mg/L時分別降低了25%和55%,而離子細胞外觀也從橢圓形變形為棘狀形。進一步以抗體標記染色的方式檢測不同離子細胞亞型,發現奈米銀對富含H+-ATPase的HR細胞和富含Na+/K+-ATPase的NaR細胞造成不同的損傷。進一步使用掃描電子顯微鏡觀察離子細胞,其頂端開口有明顯的萎縮,這和正常功能的喪失相關。另一方面,斑馬魚胚胎暴露於奈米銅後,觀察到相同的趨勢。濃度在 ≥ 0.1 mg/L時,全身Na離子和Ca離子含量顯著降低,而在 ≥ 1 mg/L時,K離子含量降低。而濃度 ≥ 1 mg/L時,胚胎皮膚的H離子排泄功能顯著降低。在奈米銅濃度 ≥ 0.1 mg/L時,用rhodamine 123標記的活離子細胞數量顯著減少。使用掃描電子顯微鏡觀察離子細胞,其頂端開口同樣有明顯的萎縮。我們也以免疫染色方式進行離子細胞亞型(HR細胞和NaR細胞) 標記,兩者都在濃度 ≥ 1 mg/L時降低。透過檢測離子轉運蛋白/通道和鈣離子調節激素mRNA表現量,發現功能的損傷也藉由基因表達的變化反映出來。綜合以上結果證實在斑馬魚胚胎早期,奈米銀和奈米銅對其皮膚離子細胞會產生毒性和並影響其離子調節的功能。由於斑馬魚離子細胞和人類腎臟細胞,在生理功能上和對環境變化的調節反應上都有高度的相似,故此一結果也提醒我們奈米金屬對人類的腎臟細胞可能有潛在毒性。Item 氨暴露導致斑馬魚胚胎離子調節損傷及成魚行為改變(2021) 鄭倢安; Cheng, Chieh-An氨(包含氣態的NH3以及離子態的NH4+)為魚類代謝胺基酸後產生的主要含氮廢物,也是常見的環境汙染物。當魚體內氨濃度提高,將會導致魚隻中樞神經受損,抽搐、昏迷甚至死亡。然而,目前研究中多著重在高氨處理後魚類的適應機制,關於氨對魚隻離子調節功能及行為的毒性作用尚不清楚。本研究分為兩個部分,首先利用斑馬魚胚胎作為模式動物,探討氨如何對胚胎離子調節功能造成損傷,接著利用斑馬魚成魚作為模式動物,評估氨處理後斑馬魚的行為改變。在胚胎毒性研究中,浸泡於不同濃度(0、10、15、20 mM)的氯化銨溶液中96小時(4-100 hpf)後,觀察胚胎卵黃囊上離子細胞及表皮角質細胞。結果指出,20 mM氨處理後離子細胞內氧化壓力上升(CellROX螢光亮度顯著上升)且由Rhodamine 123標定的具粒線體活性離子細胞數目顯著下降,顯示粒線體活性降低。此外,以細胞免疫螢光染色標定20 mM氨處理後凋亡細胞數目顯著上升,並觀察到表皮角質細胞結構損傷。綜合以上結果發現,在高氨處理下,斑馬魚胚胎離子細胞及表皮角質細胞損傷,導致斑馬魚胚胎失去體表屏障,體內離子大量流失。而在行為實驗中,將斑馬魚浸泡於不同濃度(0、1、5、10 mM)的氯化銨溶液中4小時後,對游泳行為、社交行為、學習與記憶能力等面向進行不同實驗。結果顯示1 mM氨處理時可以促進學習記憶能力;5 mM時焦慮及恐懼程度提升且群游下降;10 mM氨處理時活動力、社交行為及焦慮程度下降,但恐懼程度上升。綜上所述,在不同濃度氨暴露以及不同的環境刺激下,斑馬魚的游泳、社交、學習等行為改變,而這些改變可能使斑馬魚存活率下降,進一步使個體適存度降低。Item 利用開放原始碼之深度學習軟體評估二甲基亞碸對FMR1突變斑馬魚的治療效果(2021) 歐艾瑞; Odle, Eric背景簡介:FMR1 (fragile X mental retardation 1) 基因位於人類的Xq27.3基因座,當其CGG核苷酸重複序列 (nucleotide repeat) 過長時,將會造成X-染色體脆折症 (fragile X syndrome, 簡稱 FXS)。現已開發出可用於研究FXS的斑馬魚 (Danio rerio) 突變品系,相較於囓齒類動物,斑馬魚具有快速發育、幼體透明和高繁殖力等研究優勢。前人的囓齒類動物研究發現,FMR1突變與發炎反應間存有關聯,特別是壓力條件下的細胞激素 (cytokine) 和c-Fos的表現。已知二甲基亞碸 (dimethyl sulfoxide,簡稱DMSO)為一種的消炎藥 (anti-inflammation drug),具有多種免疫調節效果和臨床應用。 本計劃藉由建立清晰的FMR1突變行為和基因表達表型後,來探討DMSO當作治療FXS藥物的可能性。研究方法:利用顯微鏡觀察受精後 (post-fertilization, dpf) 三天大幼魚的心率和體長,以評估DMSO處理對FMR1突變品系胚胎及幼體發育的影響。採用公開性的「深度學習軟件」,進行多動物同時自發性運動跟踪法 (multi-animal locomotor tracking),分別對幼魚進行2分鐘 (n = 10) 及對成魚進行5分鐘 (n = 5) 的記錄及分析。通過觀察幼蟲的趨態性 (thigmotaxis) 和淺水內聚性 (shoal cohesion) 來評估幼魚的數焦慮行為 (anxiety-like behavior),並使用新型水箱潛水模式 (novel tank) 對成魚進行焦慮評估。利用C-start反射評估幼魚的學習行為通過觀察幼蟲的趨態性 (thigmotaxis) 和淺水內聚性 (shoal cohesion) 來評估幼魚的焦慮程度,並使用新型水箱潛水模式 (novel tank) 對成魚進行焦慮評估。利用C-start反射評估幼魚的非聯結型學習行為 (non-associative learning),而成魚則採用抑制性逃避模式 (inhibitory avoidance) 來評估學習反應。並以2項選擇模式 (two choice paradigm) 來評估成魚的社會興趣反應 (social interest paradigm)。最後透過定量聚合酶連鎖反應 (quantitative PCR) 評估全腦中FMR1和細胞激素 (cytokines) 的基因表現。實驗結果:突變品系成魚的行為表型分析顯示,同型合子 (homozygotes) 出現過動的反應 (hyperactivity),異型合子 (heterozygotes) 對陌生魚的社會興趣 (allospecific social interest) 增加,同型合子中的焦慮反應及恐懼學習(fear learning)減少。DMSO的長期投予最佳濃度為0.05%,可恢復突變品系幼魚的趨態性(thigmotaxis)和淺灘凝聚性 (shoal cohesion) 行為表型。在5-dpf時觀察到誘導的C-起始反射 (strike induced C-start) 的減少,暗示該濃度的DMSO對毛細胞可能具有潛在的毒性,然而在7-dpf的幼魚身上,並未呈現空間運動的異常。該濃度的DMSO投予能夠改善突變品系成魚的焦慮和學習缺陷等行為表型。儘管DMSO處理不能使FMR1的表現恢復到正常水平,但能顯著改善c-Fos及適度改善細胞激素因子 (IL-1β,IL-6和IL-10) 的表現。結論:本計劃的結果顯示,1)FMR1突變品系的同型合子為適合的FXS動物模型,2)DMSO的使用可減少突變品系幼魚的異常行為,3)DMSO可降低突變品系成魚的異常行為,並使其腦中發炎反應基因 (inflammation genes) 表現減少。討論:突變品系成魚的運動,焦慮和恐懼學習結果與以前的囓齒動物和斑馬魚FXS模型大致相同。但在社會興趣的結果有差異,前人報導將突變品系對同種 (cospecific) 的興趣大於同種異體 (allospecific)。在幼魚實驗中的一些新發現,包括FMR1突變體在5-dpf時明顯的非聯結型學習 (non-associative learning) 障礙,焦慮以及淺灘凝聚力的增加。過去的文獻推測的腦部發炎反應基因增加,本計劃發現FMR1 KO樣本腦中神經炎症基因被下調。進一步探討特次腦區的特異性表現 (region-specific expression),特別是在端腦內側和外側大腦皮層 (telencephalic medial and lateral pallium) ,可能會得到與囓齒類動物一致的結果。Item 系統農藥芬普尼對斑馬魚神經系統的影響(2020) 徐代軒; Hsu, Tai-Hsuan芬普尼 (fipronil) 是一種苯基吡唑類殺蟲劑,可選擇性抑制昆蟲中的γ-氨基丁酸(GABA)受體。儘管芬普尼已成為在水生環境中使用最廣泛的藥物,但很少有研究評估芬普尼的神經毒性對於水生脊椎動物的感覺和運動系統的影響。在本碩士論文的研究中,我們選擇斑馬魚(Danio rerio)實驗動物來探討芬普尼對感覺與運動系統的神經毒理作用。我們評估了急性芬普尼暴露對斑馬魚存活率,側線毛細胞數量以及神經毒性的影響,此外,我們比較了正常與芬普尼處理下斑馬魚的游泳軌跡熱圖、速度和距離的差異。我們的實驗結果發現成年斑馬魚暴露在0.5、1.0和2.0 ppm芬普尼的水中環境24小時,與正常處理斑馬魚比較,存活率隨著芬普尼濃度顯著遞減。而斑馬魚胚胎暴露在0.1、0.5和1.0 ppm芬普尼的水中環境24小時,與正常處理斑馬魚比較,側線毛細胞數量也是隨著芬普尼濃度顯著遞減。透過組織病理學和西方墨點法研究發現,成年斑馬魚暴露於1.0 ppm芬普尼的水中環境24小時,大腦組織的氧化壓力、發炎與細胞凋亡,與正常處理斑馬魚比較,則是顯著增加。通過影像追蹤觀察,成年斑馬魚暴露在0.1和0.5 ppm芬普尼的水中環境24小時,游泳軌跡的速度和距離隨著芬普尼濃度顯著遞減,儘管芬普尼的神經毒性主要針對無脊椎動物昆蟲的GABA受體而開發,但我們的研究結果發現,芬普尼不但會減低斑馬魚的存活率,還會透過損傷側線的毛細胞數量以及產生氧化壓力、發炎與細胞凋亡來損傷大腦組織來影響斑馬魚的感覺和運動系統。這結果推論系統農藥芬普尼誘導的神經毒性會損傷水生脊椎動物的感覺與運動系統。Item 利用腦側化反轉斑馬魚探討端腦的功能(2021) 李宗祐; Li, Zong-You腦側化(cerebral lateralization)是指左右邊大腦半球(cerebral hemisphere)各會偏重執行(dominate)某些特定功能,為一種脊椎動物常見的現象。這種功能性的腦側化(functional lateralization)又可追溯至左右腦結構,或是特定分子於左右腦分佈的不對稱性(asymmetric)。許多文獻指出上丘腦(epithalamus)是探討斑馬魚腦部結構的不對稱(structural asymmetry)之重要標的。副松果體位於(parapineal)上丘腦中,正常情況下,該核團約有98%的機率會位於左腦中,僅少部分「腦反轉」個體(brain inversed)其副松果體會位於右腦。本計劃比較一般個體及腦反轉個體間,外顯行為及兩側端腦功能差異,結果將有助於了解斑馬魚腦結構不對稱性對,於腦功能側化的影響。目前已知功能性腦側化會體現於個體的認知(cognition)、情緒(emotion) 和學習與記憶(learning and memory)等面向。本研究利用腦側化反轉斑馬魚,探討整合結構不對稱性對情緒與認知的影響。本研究分別使用野生型(wild-type, WT)及foxd3:GFP品系的基因轉殖(transgenic, TG) 斑馬魚作為實驗對象,該TG品系斑馬魚的副松果體會表現外源性的綠色螢光蛋白(exogenic green fluorescence protein, GFP),故可藉此判別副松果體位置,以篩選出正常(無反轉)的左側副松果體個體(left-side parapineal, Lpp)及腦反轉的右側副松果體個體(right-side parapineal, Rpp)個體。研究包括了四階段的行為實驗(behavioral experiment),第一階段是基礎運動能力測試,用以確認各實驗動物的自發性游動(locomotor activity test)是否正常,基礎運動功能正常的個體,方能進入下一階段實驗。第二階段實驗為類焦慮行為(anxiety-like behavior)測試,本研究選用新穎性水箱測試(novel tank test),交叉比對不同組別實驗動物的類焦慮行為表現。第三階段則為抑制性逃避學習測試(inhibitory avoidance test),檢核腦反轉對恐懼記憶(fear memory)的建立是否有差異。第四階段則是利用腦反轉的TG斑馬魚,探討隨著腦構造反轉後,其功能性腦側化及偏重執行的外顯行為是否同樣出現反轉的現象。實驗結果顯示,腦反轉個體(Rpp)的運動功能與學習能力未受影響,但類焦慮行為明顯增加。在認知功能方面,對無反轉斑馬魚(Lpp)施以右側端腦破壞,會干擾空間及恐懼學習能力,故推測其與野生型斑馬魚相同,空間及恐懼的學習主要由右側端腦所主導,而腦反轉的斑馬魚(Rpp)則轉變為左側端腦主導。因而可推論斑馬魚的功能性腦側化將隨腦部發育反轉,而發生左右顛倒的情形。我們相信端腦功能性側化確實存在於斑馬魚的學習和記憶過程中,但該現象是來自於先天形生(innated)的神經迴路?或是後天經驗學習後(acquired)才逐步建立?仍有賴進一步探討。本研究也觀察到即使對端腦進行較小面績的破壞,但倘若破壞到較關鍵的部位,仍會對空間和恐懼學習造成顯著的損害。Item 順鉑導致斑馬魚胚胎離子細胞氧化壓力與細胞凋亡(2020) 吳巧羚; Wu, Ciao-Ling順鉑為現今廣泛使用之化療藥物,卻伴隨腎毒性、神經毒性和耳毒性等副作用,其中主要限制施予劑量的因素為腎毒性。順鉑可經由銅離子運輸蛋白與有機陽離子運輸蛋白進入腎臟上皮細胞,造成腎小管損傷,目前哺乳動物細胞研究模式已知氧化壓力生成是順鉑造成細胞損傷的主要原因之一。斑馬魚是廣泛使用於毒理學研究與藥物測試的模式動物,其仔魚表皮分布的五型離子細胞與哺乳動物腎臟上皮細胞有許多相似之處,因直接暴露於環境,好操作且易觀察。本研究以斑馬魚仔魚表皮離子細胞作為研究順鉑腎毒性之工具,使用活體螢光染色觀察順鉑對離子細胞的影響,來證實順鉑會導致離子細胞氧化壓力生成、粒線體損傷和細胞凋亡。本實驗將斑馬魚胚胎浸泡於不同濃度的順鉑(0、50、100、300、500 或 1000 μM)進行長時間(4-100 hpf)或短時間(96-98 hpf)處理,再使用活體螢光染劑單染或共染的方式,標定斑馬魚仔魚卵黃囊上具粒線體活性離子細胞(Rhodamine 123/MitoTracker)與凋亡細胞(AcridineOrange),並探討當中活性氧化物的產生(CellROX/ MitoSOX)。斑馬魚胚胎分別在順鉑處理 96小時及 2 小時後,Rhodamine 123 標定具粒線體活性離子細胞數目均顯著下降,且凋亡細胞數目顯著上升;斑馬魚胚胎分別在順鉑處理 96 小時及 1 小時後,產生活性氧化物的離子細胞數目或 CellROX/MitoSOX 的螢光亮度均顯著上升。此外,將斑馬魚胚胎進行抗氧化劑 NAC(0、100、300、500 或 1000 μM)與順鉑的長時間共處理,發現 NAC 能降低胚胎的死亡率,並減緩順鉑對離子細胞所導致的氧化壓力與損害。由以上結果可證實順鉑會導致離子細胞氧化壓力生成和粒線體損傷,並引起細胞凋亡,而抗氧化劑 NAC 可作為順鉑毒性的保護劑。Item 水通道蛋白8aa在斑馬魚仔魚上的功能性研究(2012) 高揚彥; Kao, Yang-Yen水通道蛋白(aquaporins, AQPs)是一群執行水分子通透的細胞膜蛋白。此外,有些AQPs也被發現具有二氧化碳、甘油、氨與尿素的通透性。最近研究將斑馬魚(Danio rerio) aqps基因表現於蛙卵會增加細胞膜對二氧化碳/NH3通透性。然而,目前仍沒有活體的實驗證實AQPs在動物體內參與二氧化碳(carbon dioxide, CO2)及NH3的通透能力。在本篇研究中,在原位雜交反應的結果中發現aqp8aa主要表現於斑馬魚仔魚的鰓上及皮膚上,而在利用免疫組織染色搭配原位雜交反應的結果發現AQP8AA主要在皮膚上表現於兩型的離子細胞上(HR cells and NaR cells)。而在高氨馴養(10 mM NH4+)的情況下aqp8aa的mRNA表現量有顯著提升的情況,而在高碳酸水馴養的情況下卻無此情況產生。利用反義核酸(morpholino oligonucleotides)抑制aqp8aa蛋白質的表現後,利用掃描式離子選擇性電極(scanning ion-selective technique, SIET)來分析H+及NH4+在斑馬魚仔魚皮膚及離子細胞上的運輸。在knockdown aqp8aa表現後,發現仔魚整體的H+及NH4+的排放量都有下降的情況,而在特定細胞也有相似的結果,而在CO2短暫灌流的結果中也發現魚體對於H+排放量都有下降的情況,在特定細胞也有相似的結果,由此結果推論AQP8AA在斑馬魚的仔魚上可能參與著此三物質的運輸。Item 保護劑對斑馬魚側線機械性傳導通道之影響(2012) 莊偉民; Wei-Min Chuang毛細胞的機械性傳導通道(mechanotransducer channel, MET channel)會受到機械性刺激而開啟。陽離子經由MET通道流入造成毛細胞發生去極化,而釋放神經傳遞物質。胺基糖苷類(aminogly- cosides, AGs)抗生素在臨床上被用於治療革蘭氏陰性菌感染的疾病,但是AGs常導致許多副作用包括內耳毛細胞的損傷,甚至聽力喪失。魚類側線毛細胞為一種機械性接受器,負責感覺外在水體的流動。哺乳動物內耳與魚類側線的毛細胞,兩者不論是構造形態或功能特性都有相似之處,因此斑馬魚常被採用作為耳毒性藥物篩選的模式動物。然而對於毛細胞MET通道的特性目前仍沒有很好的驗證方式。本研究應用非侵入掃描式離子選擇電極技術(scanning ion-selective electrode technique, SIET),針對斑馬魚胚胎的MET通道進行特性分析。毛細胞的纖毛束經微電極的機械性刺激後,可記錄到鈣離子流入,但是鉀離子與鈉離子的通透並不顯著。並且鈣離子流入會被AGs(neomycin和gentamicin)的短時間(30分鐘)處理所抑制,顯示MET通道可能被AGs所阻斷。將環境中鈣離子濃度從0.2 mM提高到2 mM,可減少neomycin和gentamicin對MET通道的阻斷;而提高水中的鎂離子濃度到5 mM,卻只能降低gentamicin對MET通道的阻斷。Amiloride過去被認為是一種MET通道的阻斷劑。本研究發現amiloride並無法阻斷側線毛細胞MET通道的鈣離子流入,但卻可降低AGs對MET通道的阻斷作用。Item 水通道蛋白(aqp1a)在斑馬魚胚胎表皮參與二氧化碳的運送(2011) 趙珮伶; Pei-lin Chao水通道蛋白(aquaporins, AQPs)是一群執行水分子通透的細胞膜蛋白。此外,有些AQPs也被發現具有二氧化碳、甘油、氨與尿素的通透性。因此AQPs 依其功能又區分成三亞群,分別為aquaporins, aquaammoniaporins, 與 aquaglyceroporins三群。在哺乳類研究發現,AQP1缺失的紅血球會降低二氧化碳通透性。最近研究將斑馬魚(Danio rerio) aqp1a表現於蛙卵會增加細胞膜對二氧化碳通透性。然而,目前仍沒有活體的實驗證實AQPs在動物體內參與二氧化碳(carbon dioxide, CO2)通透。本研究利用斑馬魚仔魚為模式動物,探討aqp1a在仔魚表皮細胞上的分佈與功能。將1 % CO2馴養一週的仔魚以real-time PCR分析,結果顯示aqp1a mRNA表現量增加。利用原位雜交與抗體染色標定,發現aqp1a大量表現於卵黃囊表皮上的H+-pump-rich cell與Na+ -pump-rich cell,其他表皮細胞則有少量的表現。利用morpholino knockdown弱化aqp1a蛋白的表現再利用離子選擇電極技術(SIET)分析碳酸排放,發現aqp1a基因弱化的仔魚碳酸的排放減少,顯示aqp1a在胚胎體表細胞扮演CO2通透的功能。
- «
- 1 (current)
- 2
- 3
- »