理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    熱帶太平洋環流的動力: 演化、調節與解釋
    (2014) 王儷樵; Li-Chiao Wang
      本研究使用海洋模式資料,分析太平洋低緯度區域洋流的演變過程,並探究其背後機制。由於聖嬰–南方振盪現象(El Niño-Southern Oscillation,ENSO)在太平洋熱帶區域扮演了極其重要的角色,本研究主要著重於ENSO在赤道區域對洋流的影響,以及ENSO和其他氣候因子交互作用之下,熱帶區域洋流所產生的變化。 模式資料顯示,中太平洋聖嬰發生時,赤道地區的溫躍層產生了東西向振盪的變化,且南赤道洋流和赤道潛流明顯減弱,這和前人研究的結果是一致的;東太平洋聖嬰的情況完全不同:赤道區域的溫躍層產生了東西向及南北向的振盪,且自聖嬰的發展期開始,北赤道反流不斷增強,到了成熟期,南赤道洋流不僅未減弱,還持續增強了六個月。本研究進一步發現,風應力旋度透過艾克曼作用而帶動了溫躍層的變化,是造成兩種聖嬰現象之下太平洋環流有如此差異的關鍵。另外,模式資料顯示,中太平洋位於10°N–15°N , 160°E–170°E的風應力旋度場,激發了羅士培波(Rossby waves),間接影響了北赤道洋流在菲律賓沿岸分支點的變化。1976~1992年,剛從負相位轉為正相位的太平洋十年期振盪(Pacific Decadal Oscillation,PDO)和ENSO勢均力敵,效力中和,使得中太平洋風場失去了激發Rossby waves的能力,間接導致北太平洋分支點緯度偏南;1993~2009年,PDO主導了中太平洋的風場並激發了Rossby waves,使得北太平洋分支點緯度偏北,其效力約為來自ENSO效力的13倍。而在1976年以前,當PDO仍為負相位時,中太平洋的風場由ENSO所主導。本研究發現,唯有PDO和ENSO兩者效力相差甚遠時,方能激發Rossby waves並使得北赤道洋流分支點往北偏移;當PDO初經歷相位轉換,與ENSO效力互相削弱,中太平洋的風場就失去了遠端影響北太平洋分支點的能力。
  • Item
    Contrasting the flow patterns in the equatorial Pacific between two types of El Ni隳.
    (Taylor & Francis: STM, Behavioural Science and Public Health Titles, 2012-11-01) Wang, L.-C.; C.-R. Wu
    Outputs based on the National Centers for Environmental Prediction (NCEP) Global Ocean Data Assimilation System (GODAS) are adopted to contrast the current variations in the equatorial Pacific between two types of El Niño. The model fully resolves the equatorial currents. We found that the central Pacific El Niño (CP-El Niño) corresponds well with previous El Niño studies in that both the eastward Equatorial Undercurrent (EUC) and westward South Equatorial Current (SEC) weaken. On the other hand, the eastern Pacific El Niño (EP-El Niño) displays a distinct circulation pattern. The North Equatorial Countercurrent (NECC) strengthens in the developing phase and persists into the peak of the warm event, whereas the northern branch of the SEC (SECn) also intensifies during the mature phase and lasts for about six months. The South Equatorial Countercurrent (SECC) strengthens during the decaying phase of the EP-El Niño. The shifting of the wind stress curl associated with the thermocline variability is chiefly responsible for the unique current performance of the EP-El Niño. It is worth noting that the air–sea interaction plays an important role in the current variability not only during a CP-El Niño but also during an EP-El Niño. RÉSUMÉ [Traduit par la rédaction] Nous adoptons les sorties basées sur le système GODAS (Global Ocean Data Assimilation System) des NCEP (National Centers for Environmental Prediction) pour mettre en évidence les variations de courant dans le Pacifique équatorial entre les deux types d'El Niño. Le modèle représente complètement les courants équatoriaux. Nous trouvons que l'El Niño du centre du Pacifique (CP-El Niño) correspond bien aux études précédentes sur l'El Niño puisque le sous-courant équatorial (EUC) vers l'est et le courant sud-équatorial (SEC) vers l'ouest faiblissent. D'autre part, l'El Niño de l'est du Pacifique (EP- El Niño) affiche une configuration de circulation distincte. Le contre-courant nord-équatorial (NECC) se renforce dans la phase de développement et persiste jusqu'au maximum du réchauffement, tandis que la branche nord du SEC (SECn) s'intensifie aussi durant la phase de maturité et persiste pendant environ six mois. Le contre-courant sud-équatorial se renforce durant la phase de dissipation de l'EP-El Niño. Le changement du rotationnel de la tension du vent lié à la variabilité thermocline est principalement responsable du comportement particulier du courant de l'EP-El Niño. Il est à remarquer que l'interaction air–mer joue un rôle important dans la variabilité du courant, non seulement durant un CP-El Niño mais aussi durant un EP-El Niño.
  • Item
    The forcing mechanism leading to the Kuroshio intrusion into the South China Sea
    (American Geophysical Union (AGU), 2012-07-01) Wu, C.-R.; Y.-C. Hsin
    We use a high-resolution numerical model to examine the forcing mechanism responsible for Kuroshio intrusion into the South China Sea (SCS). The collective wisdom is that variations in Kuroshio intrusion are closely related to the wind, inside or outside the SCS. A series of experiments was performed to identify the wind-related forcing regulating the intrusion. The experiments demonstrated that the importance of wind inside the SCS is greater than that outside the SCS. Furthermore, the northwestward Ekman drift due to northeasterly wind in winter intensifies the upstream Kuroshio in the Luzon Strait, enhancing the Kuroshio intrusion into the SCS. In particular, the wind stress curl (WSC) off southwest Taiwan is chiefly responsible for the Kuroshio intrusion. Both the WSC and intrusion show both seasonal and intraseasonal variation. As the negative WSC off southwest Taiwan becomes stronger, it contributes to anticyclonic circulation. The enhanced anticyclonic circulation helps the development of the Kuroshio intrusion. The consistency between WSC variability and the intrusion suggests that the WSC off southwest Taiwan is essential to the Kuroshio intrusion variability.
  • Item
    Bimodal Behavior of the Seasonal Upwelling off the northeastern coast of Taiwan
    (American Geophysical Union (AGU), 2009-03-01) Chang Y.-L.; C.-R. Wu; L.-Y. Oey
    Observations over the outer shelf and shelf break off the northeastern coast of Taiwan indicate a curious seasonal variability of upwelling. At deeper levels 100 m below the surface, upwelling is most intense in summer but weaker in winter. Nearer the surface at approximately 30 m below the surface, the opposite is true and the upwelling is stronger in winter than in summer. Results from a high-resolution numerical model together with observations and simple Ekman models are used to explain the phenomenon. It is shown that the upwelling at deeper levels (∼100 m) is primarily induced by offshore (summer) and onshore (winter) migrations of the Kuroshio, while monsoonal change in the wind stress curl, positive in winter and negative in summer, is responsible for the reversal in the seasonal variation of the upwelling near the surface (∼30 m). This mechanism reconciles previous upwelling data.