理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    錳摻雜單層二維量子結構半導體之合成、鑑定及應用
    (2021) 莊凱鈞; Chuang, Kai Chun
    本研究探討單層二維奈米片材料摻雜二價錳離子後之磁光特性,單層二維奈米片之化學實驗式分別為MnxCd1-xSe(en)0.5和MnxZn1-xSe(en)0.5,以乙二胺(ethylenediamine)作為層與層之橋接。半導體之合成方式採用溶劑熱條件,以硼氫化鈉還原硒粉做為硒的前驅物,透過合成溫度的調控,優化奈米片生長條件。可調控的二價錳離子濃度(x=0~12 %) 摻雜入單層二維奈米片MnxCd1-xSe(en)0.5和MnxZn1-xSe(en)0.5分別產生晶格收縮與擴張的改變,受到錳d軌域上的五個為成對電子,伴隨著磷光的發生。經由元素分析與X光光電子能譜發現在合成過程會吸附氧並產生鍵結,造成鍵結能受不同摻雜濃度錳離子而改變。摻雜錳單層二維奈米片在電子順磁共振光譜方向性測量中表現出各項異性,且在低溫下的光譜經擬合出大的零場分裂值 (D =3850 MHz)。在磁圓二色性光譜在室溫下,量測到很大塞曼分裂與朗克g因子 (g= 200~300),指出在單層二為材料具有很強的sp-d交互作用力。在具有原子級厚度的單層二維半導體,表現強量子侷限效應,並發現在室溫下有良好的性質,未來在自旋電子學的應用有更好的發展。
  • Item
    以錳摻雜單層二維結構硒化鎘半導體之合成、鑑定及應用
    (2019) 李祺; Li Chi
    本論文有兩個研究方向。第一個主題為探討不同濃度錳摻雜之單層二維硒化鎘奈米片,層與層之間利用乙二胺作為有機配位基,化學實驗式為MnxCd1-xSe(en)0.5。半導體之合成方法採用過去本實驗室發展的溶劑熱條件,以硼氫化鈉還原硒粉來取代價格昂貴的硒脲,做為硒的前驅物,並與欲摻雜金屬離子前驅物合成出MnxCd1-xSe(en)0.5 (x=0.5-7.7 %) 之單層二維膠體奈米片。透過場發射掃描穿透式球差修正電子顯微鏡、感應耦合電漿質譜分析儀、紫外光-可見光光譜儀、螢光光譜儀、磷光生命週期光譜儀、X光粉末繞射儀、X光吸收光譜延伸區精細結構、電子順磁共振光譜儀、磁圓偏振二色性光譜等儀器,鑑定錳摻雜後奈米片所產生的結構變化、磷光性質、電子順磁共振及磁光效應,並做進一步的探討及在稀磁性半導體之應用價值。 本研究的第二個主題探討錳摻雜二維奈米片MnxCd1-xSe(en)0.5,經由雷射誘發所產生之放光現象。以低於能隙 (2.85 eV) 之雷射光源,可經由雙光子吸收來激發單層二維奈米片的不同放光,並利用時間相關單光子計數系統及磷光光譜儀,比較以氙燈光源所產生之不同電子躍遷路徑,並以其放光強度及生命週期做為區分。此材料不僅可被低於能隙能量之雷射所激發,其放光機制亦驗證單層二維奈米片在光子上轉換、及二維量子發光體中的反聚束效應之可能性。
  • Item
    芳香族雙氧烷化學發光的取代基效應
    (2013) 孫崇文; Chung-Wen Sun
    4個三環1,2-雙氧烷衍生物1a~4a是由對應結構之1,4-雙醚苊烯化合物1~4在二氯甲烷中與單態氧進行環化加成而成。本論文將這些化合物分成2個部分加以討論。第一部分包含1,2-雙氧烷化合物1a~3a的熱分解,探討在5號苊環位置供電子能力的取代基效應。實驗證據顯示1,2-雙氧烷化合物1a~3a分別經由熱分解形成電子激發態雙酯化合物1b*~ 3b*並伴隨化學發光。由高張力1,2-雙氧烷環之扭曲立體結構自發斷裂氧-氧鍵及碳-碳鍵,產生電子激發態雙酯化合物並伴隨化學發光。觀察化合物2a的化學發光光譜相較於化合物1a及3a更為紅位移,推測由於具電子供給特性之甲氧基造成激發態更高之穩定性。此外,溶劑效應的研究顯示化合物2b呈現更極性的激發態使光激螢光光譜之明顯紅位移。1,2-雙氧烷的熱分解動力學研究,清楚顯示化合物2a的化學發光特性明顯與化合物1a和3a有所不同,這些結果顯示化合物2a的供電子取代基能活化分子內化激電子互換發光機制。 第二部分研究化合物1a與5-鹵取代1,2-雙氧烷化合物3a及4a在化學發光螢光及磷光的重原子效應。當化合物3a及4a在二氯甲烷溶劑中,升溫範圍由313至353K,經熱分解形成對應之萘基雙酯化合物3b及4b時,可產生化學發光磷光與螢光。由艾林線性圖求得之活化焓,顯示重原子效應增加1,2-雙氧烷化合物熱分解的叁態化學激發過程產生磷光的路徑。
  • Item
    以理論計算探討重原子過渡金屬其激發態動力學分析和放光性質
    (2014) 姜宗螢; Tzung-Ying Jiang
    本論文將探討過渡金屬錯合物之光物理性質,特別針對過渡金屬錯合物Sn 到Tm之間系統間跨越(Intersystem crossing, ISC)的速率之影響參數進行研究。過渡金屬錯合物中心的重原子效應產生之強自旋-軌道交互作用力(spin-orbit coupling, SOC),可以增強系統間跨越的效率,使其有利於放出磷光。若能有效的提升系統間跨越的效率,就可間接加強過渡金屬錯合物放光的量子產率,因此ISC速率的大小是很多光電材料應用上的關鍵因素。本篇將對各種不同類別的發光過渡金屬錯合物進行討論,以理論計算方法預測這些過渡金屬的光物理性質,並與實驗數據相互比較。最終希望能找出影響過渡金屬化合物自旋-軌道耦合(spin-orbit coupling)作用力大小和ISC量子產率之定量關係式的各種因素,如電子結構,如原子序、鍵長、電子躍遷性質、單重態與三重態能階差等。   我們主要以鋨(Osmium) 、釕(Ruthenium)和銅(Copper)、銀(Silver)、金(Gold)等過渡金屬錯合物為討論對象,探討metal-to-ligand charge transfer(MLCT)和中心金屬d軌域對自旋-軌道耦合之影響,以定量的方式計算出自旋-軌道耦合強度大小,並比較內部重原子效應(Internal heavy atom effect)和外部重原子效應(External heavy atom effect)對系統間跨越的差異性。而在最後一部分探討鋨(Osmium)系列過渡金屬錯合物在較高激發態(High-lying excited state)系統間跨越的反應速率遠高於S1→Tm的系統間跨越反應速率之特殊性質。 關鍵字:有機發光二極體,過度金屬錯合物,重原子效應,自旋-軌道耦合作用力,系統間跨越,磷光