理學院
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3
學院概況
理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。
特色理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。
理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。
在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。
在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。
Browse
11 results
Search Results
Item 以斑馬魚為動物模式研究奈米金屬對離子細胞之毒性(2021) 李致穎; Lee, Chih-Ying在21世紀,奈米科技快速發展,應用廣泛,而這也同時增加了人類接觸各種不同奈米顆粒的機會,因此針對其毒性的研究,也相形越來越重要。而其中,金屬奈米顆粒對於魚類離子細胞的潛在毒性仍未有充分的研究。本篇研究是以斑馬魚胚胎為動物模式,探討奈米銀和奈米銅對斑馬魚胚胎皮膚上的離子細胞功能之毒性作用。實驗方式是將斑馬魚的胚胎分別浸泡於奈米銀和奈米銅96小時(受精後4〜100小時(hpf))後,檢測其全身離子含量及皮膚上離子細胞的數量和功能。暴露於奈米銀96小時後,全身Na離子和K離子含量在奈米銀濃度為3 mg/L組別中顯著下降,而Ca離子含量在濃度 ≥ 0.1 mg/L時下降。以Scanning ion-selective electrode technique(SIET)檢測胚胎皮膚的H離子分泌功能,發現在3 mg/L時功能顯著降低。以rhodamine 123(粒線體標記)來標記離子細胞,其密度在1和3 mg/L時分別降低了25%和55%,而離子細胞外觀也從橢圓形變形為棘狀形。進一步以抗體標記染色的方式檢測不同離子細胞亞型,發現奈米銀對富含H+-ATPase的HR細胞和富含Na+/K+-ATPase的NaR細胞造成不同的損傷。進一步使用掃描電子顯微鏡觀察離子細胞,其頂端開口有明顯的萎縮,這和正常功能的喪失相關。另一方面,斑馬魚胚胎暴露於奈米銅後,觀察到相同的趨勢。濃度在 ≥ 0.1 mg/L時,全身Na離子和Ca離子含量顯著降低,而在 ≥ 1 mg/L時,K離子含量降低。而濃度 ≥ 1 mg/L時,胚胎皮膚的H離子排泄功能顯著降低。在奈米銅濃度 ≥ 0.1 mg/L時,用rhodamine 123標記的活離子細胞數量顯著減少。使用掃描電子顯微鏡觀察離子細胞,其頂端開口同樣有明顯的萎縮。我們也以免疫染色方式進行離子細胞亞型(HR細胞和NaR細胞) 標記,兩者都在濃度 ≥ 1 mg/L時降低。透過檢測離子轉運蛋白/通道和鈣離子調節激素mRNA表現量,發現功能的損傷也藉由基因表達的變化反映出來。綜合以上結果證實在斑馬魚胚胎早期,奈米銀和奈米銅對其皮膚離子細胞會產生毒性和並影響其離子調節的功能。由於斑馬魚離子細胞和人類腎臟細胞,在生理功能上和對環境變化的調節反應上都有高度的相似,故此一結果也提醒我們奈米金屬對人類的腎臟細胞可能有潛在毒性。Item 銀離子對廣鹽性青鱂魚胚胎離子調節與海水適應能力之影響(2022) 李亞珊; Lee, Ya-Shan銀被廣泛應用於商業產品與醫療器材中,例如:抗菌劑、個人護理產品、傷口的敷料……等。隨著銀的廣泛使用,此類化學物質對水生環境的潛在負面影響也日漸受到重視。過去文獻指出,銀離子暴露會干擾魚類離子調節的功能、損害魚類的肝臟、鰓、腸子等器官與造成胚胎發育毒性,但針對銀是否會影響廣鹽性魚類適應環境鹽度轉變的能力,相關研究較為少見。本研究利用青鱂魚(Oryzias latipes)胚胎作為模式動物,更全面性地探討銀離子在淡水與海水中對廣鹽性魚類離子與滲透壓調節的影響。硝酸銀暴露7天後,淡水與海水馴養組的半致死濃度分別為0.17 ppm與1.01ppm。淡水馴養組的胚胎心率顯著上升、以NKA免疫細胞螢光染色標定的離子細胞密度顯著下降,而海水處理組則是沒有顯著變化。將胚胎暴露於含有硝酸銀的海水8天後,發現胚胎的相對喝水量顯著下降、腸道細胞的凋亡程度顯著上升,還可觀察到腸道組織與上皮細胞受損。將胚胎暴露於含有硝酸銀(0.01、0.05、0.1 ppm)的淡水7天後,轉移至含有相同硝酸銀濃度的海水中12小時,並評估銀離子對胚胎的海水適應能力之影響。結果顯示,胚胎的死亡率顯著上升、心率顯著下降,形態方面則觀察到體軸彎曲、軀幹脫水與圍心腔水腫。離子調節方面,以NKA免疫系標染色所標定的離子細胞形態變形且細胞密度顯著下降、以MitoTracker標定的卵黃囊上具粒線體活性的離子細胞之細胞密度下降、頂膜開口的大小沒有產生適應性變化,顯示離子細胞受損且可能無法轉為海水型。此外,硝酸銀暴露還會使胚胎轉移至海水後的相對喝水量顯著下降。由於離子與滲透壓調節器官的功能受損,最後導致胚胎體內鈉離子含量顯著上升。綜合以上結果,可知銀離子毒性在淡水環境下比海水環境下強,且在淡水中會造成卵黃囊上的離子細胞損傷,而在海水中則會造成腸道組織與細胞受損並降低吸收水分的能力。當離子與滲透壓調節器官受影響時,胚胎亦無法成功適應環境鹽度的改變。Item 粘桿菌素對斑馬魚胚胎之毒性並探討鈣離子對粘桿菌素的影響(2021) 林佳柔; Lin, Jia-Rou近年來因為抗生素的過度使用導致環境汙染的問題逐漸受到重視。目前在臨床上使用之粘桿菌素colistin 會對人體造成腎毒性及神經毒性等副作用,因此被列為對抗格蘭氏陰性細菌感染的最後一線用藥。在許多國家中粘桿菌素也被大量使用在畜產業上作為動物傳染病的防治,進而導致粘桿菌素隨著動物排泄物及未食用完畢的食物進入水域環境中,產生具有抗藥性的大腸桿菌。然而,粘桿菌素對水生動物可能的危害卻仍未被研究。因此本研究目的是利用斑馬魚胚胎為模式以探討粘桿菌素暴露對魚類可能產生的毒性以及水中離子濃度對其毒性之影響。結果發現斑馬魚胚胎暴露粘桿菌素 96小時之半致死濃度約為3 μM,死亡個體出現皮膚細胞破損現象,但未產生發育異常與畸形;在亞致死濃度下桿菌素會減少側線毛細胞數量以及離子細胞數量,並損害角質細胞結構。 綜合上述 在隨時間的觀察發現 魚體皮膚角質細胞在暴露粘桿菌素後會逐漸破損,最終導致皮膚細胞瓦解,體內離子失衡,魚體死亡。藉由改變水中的離子濃度,發現鈣離子濃度對粘桿菌素的毒性有關鍵性的影響。提高鈣濃度可以有效減低其毒性,降低鈣濃度會提高毒性。本研究證實了粘桿菌素在水域汙染後可能對魚類產生危害,藉由提高水中的鈣離子濃度可減低其毒性。Item 氨暴露導致斑馬魚胚胎離子調節損傷及成魚行為改變(2021) 鄭倢安; Cheng, Chieh-An氨(包含氣態的NH3以及離子態的NH4+)為魚類代謝胺基酸後產生的主要含氮廢物,也是常見的環境汙染物。當魚體內氨濃度提高,將會導致魚隻中樞神經受損,抽搐、昏迷甚至死亡。然而,目前研究中多著重在高氨處理後魚類的適應機制,關於氨對魚隻離子調節功能及行為的毒性作用尚不清楚。本研究分為兩個部分,首先利用斑馬魚胚胎作為模式動物,探討氨如何對胚胎離子調節功能造成損傷,接著利用斑馬魚成魚作為模式動物,評估氨處理後斑馬魚的行為改變。在胚胎毒性研究中,浸泡於不同濃度(0、10、15、20 mM)的氯化銨溶液中96小時(4-100 hpf)後,觀察胚胎卵黃囊上離子細胞及表皮角質細胞。結果指出,20 mM氨處理後離子細胞內氧化壓力上升(CellROX螢光亮度顯著上升)且由Rhodamine 123標定的具粒線體活性離子細胞數目顯著下降,顯示粒線體活性降低。此外,以細胞免疫螢光染色標定20 mM氨處理後凋亡細胞數目顯著上升,並觀察到表皮角質細胞結構損傷。綜合以上結果發現,在高氨處理下,斑馬魚胚胎離子細胞及表皮角質細胞損傷,導致斑馬魚胚胎失去體表屏障,體內離子大量流失。而在行為實驗中,將斑馬魚浸泡於不同濃度(0、1、5、10 mM)的氯化銨溶液中4小時後,對游泳行為、社交行為、學習與記憶能力等面向進行不同實驗。結果顯示1 mM氨處理時可以促進學習記憶能力;5 mM時焦慮及恐懼程度提升且群游下降;10 mM氨處理時活動力、社交行為及焦慮程度下降,但恐懼程度上升。綜上所述,在不同濃度氨暴露以及不同的環境刺激下,斑馬魚的游泳、社交、學習等行為改變,而這些改變可能使斑馬魚存活率下降,進一步使個體適存度降低。Item 順鉑導致斑馬魚胚胎離子細胞氧化壓力與細胞凋亡(2020) 吳巧羚; Wu, Ciao-Ling順鉑為現今廣泛使用之化療藥物,卻伴隨腎毒性、神經毒性和耳毒性等副作用,其中主要限制施予劑量的因素為腎毒性。順鉑可經由銅離子運輸蛋白與有機陽離子運輸蛋白進入腎臟上皮細胞,造成腎小管損傷,目前哺乳動物細胞研究模式已知氧化壓力生成是順鉑造成細胞損傷的主要原因之一。斑馬魚是廣泛使用於毒理學研究與藥物測試的模式動物,其仔魚表皮分布的五型離子細胞與哺乳動物腎臟上皮細胞有許多相似之處,因直接暴露於環境,好操作且易觀察。本研究以斑馬魚仔魚表皮離子細胞作為研究順鉑腎毒性之工具,使用活體螢光染色觀察順鉑對離子細胞的影響,來證實順鉑會導致離子細胞氧化壓力生成、粒線體損傷和細胞凋亡。本實驗將斑馬魚胚胎浸泡於不同濃度的順鉑(0、50、100、300、500 或 1000 μM)進行長時間(4-100 hpf)或短時間(96-98 hpf)處理,再使用活體螢光染劑單染或共染的方式,標定斑馬魚仔魚卵黃囊上具粒線體活性離子細胞(Rhodamine 123/MitoTracker)與凋亡細胞(AcridineOrange),並探討當中活性氧化物的產生(CellROX/ MitoSOX)。斑馬魚胚胎分別在順鉑處理 96小時及 2 小時後,Rhodamine 123 標定具粒線體活性離子細胞數目均顯著下降,且凋亡細胞數目顯著上升;斑馬魚胚胎分別在順鉑處理 96 小時及 1 小時後,產生活性氧化物的離子細胞數目或 CellROX/MitoSOX 的螢光亮度均顯著上升。此外,將斑馬魚胚胎進行抗氧化劑 NAC(0、100、300、500 或 1000 μM)與順鉑的長時間共處理,發現 NAC 能降低胚胎的死亡率,並減緩順鉑對離子細胞所導致的氧化壓力與損害。由以上結果可證實順鉑會導致離子細胞氧化壓力生成和粒線體損傷,並引起細胞凋亡,而抗氧化劑 NAC 可作為順鉑毒性的保護劑。Item 青鱂魚仔魚體表離子細胞的排氨參與鈉離子吸收機制(2009) 吳淑貞; Shu-Chen Wu鈉氫交換蛋白(Na+/H+ exchanger,NHE)主要分佈於富含粒線體細胞(MR細胞)頂膜,是淡水魚類鰓上皮執行Na+吸收的重要機制,過程中同時發生排酸現象。然而早期文獻從排氨量與Na+吸收量呈現相關的結果推論Na+吸收過程協同發生排氨,並認為此現象是因NHE執行Na+/NH4+的交換所致。然而近年來發現排氨主要以非離子態NH3經由Rh蛋白排除,否定了NHE執行Na+/NH4+交換的可能。因此,NHE如何在淡水環境中驅動Na+/H+交換,及排氨量與Na+吸收呈現相關的原因至今仍未明瞭。本研究以青鱂魚仔魚為模式動物,利用掃瞄式離子選擇電極技術(SIET)進行非侵入性量測,探討其體表細胞的Na+吸收機制與排H+、排NH4+間的關連性,並試圖推論NHE如何參與Na+吸收機制。結果發現,NHE抑制劑(100 uM EIPA)浸泡會顯著抑制仔魚排酸、排氨及Na+吸收,顯示NHE參與此三種離子的調節機制。低鈉水(<0.001 mM)馴養個體會增加體表Na+吸收與排NH4+,但降低了體表H+濃度;高氨水(5 mM NH4+)馴養也造成類似結果。而在測量環境中給予短時間高氨處理(5 mM NH4+)可同時抑制排NH4+與Na+吸收並增加體表H+累積濃度。以上結果顯示魚體排氨機制可能驅動NHE進行Na+吸收。從仔魚體表單一細胞離子流測量結果發現,Na+吸收與排NH4+主要發生在MR細胞。以H+電極測量後發現體表MR細胞有排酸(MRC+)和排鹼(MRC-)二型,高氨與與低鈉水馴養都會增加MRC-的比例。在測量環境中給予短時間高氨處理(5 mM NH4+),排鹼型MR細胞會轉變為排酸型,而同時抑制Na+吸收。顯示MRC-可能排除大量NH3造成細胞外H+被結合成NH4+而形成排鹼現象。此外,酸性水體(pH6)理論上不利於NHE的驅動,然而結果顯示短期酸處理促進Na+吸收與排NH4+。由此推論Rh蛋白在輔助NH3排放的過程中,會造成細胞膜內外H+梯度的增加進而有利推動NHE進行Na+吸收。Item 斑馬魚仔魚體表排氨功能與機制之研究(2008) 施廷翰淡水魚類移除體內含氮廢物最佳的方式,是直接將廢物以氨(ammonia,即NH3與NH4+)的形式排放到水體。具研究顯示,80%以上的氨會經由鰓排出。然而目前針對魚類鰓表皮細胞所作的研究仍未足以提供直接的證據說明排氨的運行方式。本實驗選用斑馬魚仔魚為模式動物,透過其體表的離子調節功能探討淡水魚類的排氨機制。 在本實驗中,利用掃描式離子選擇性電極技術(Scanning Ion-selective Electrode Technique, SIET)對仔魚體表離子作檢測。實驗發現在富含氫幫浦細胞( HRC)上的排氨的程度高於周遭的平舖細胞(PVC)與其它類型的離子細胞(Ionocyte)。以往的研究推論氫離子(H+)與排氨之間有密切的關係。在本實驗中,針對氫幫浦而使用的抑制劑bafilomycin A1與gene knockdown技術,會同時造成魚類H+與NH4+的梯度顯著降低。當給予水體高量緩衝溶液(5 mM 3-morpholinopropane sulfonic acid, MOPS)時,也發現H+與NH4+ 的排出量顯著下降。本實驗亦以SIET分析Rhcg1的功能,發現rhcg1 knockdown的仔魚其體表以及細胞排氨量明顯降低。綜合以上結果,本實驗證實仔魚體表細胞透過酸捕捉機制進行排氨功能,也為氫幫浦及Rhcg1提供參與排氨機制的直接證據。Item 青鱂魚海水型離子細胞之排氨、排鹽以及酸鹼平衡機制研究(2015) 劉咸台; Liu, Sian-Tai海水硬骨魚皮膚或鰓上的離子細胞主要負責排氨、排酸以及排鹽等功能。過去研究認為酸促進氨排放的機制對於淡水魚排氨相當重要。然而,酸促進氨排放的機制對於海水魚排氨的重要性至今仍未清楚。除此之外,離子細胞的排酸機制在海水魚的研究中也尚未釐清。本研究的目的是利用廣鹽性物種青鱂魚為模式,用來釐清海水魚離子細胞的排氨、排鹽以及酸鹼平衡機制。 在第一章利用選擇性離子掃秒電極的電生理技術來偵測仔魚體表的氫離子濃度梯度,發現海水青鱂魚卵黃囊體表的區域有酸性層的存在。卵黃囊體表的離子細胞其排氫的能力比角質細胞佳。在Tricine buffer和EIPA藥物處理後發現仔魚體表的排酸和排銨皆明顯的下降。藉由原位雜交反應以及化學免疫染色的方式標定出Na+/H+ exchanger 2 (NHE2) mRNA和NHE3蛋白皆表現在同一型海水離子細胞上。經定量即時聚合酶鏈鎖反應分析中發現青鱂魚鰓上的NHE3、Rhesus B glycoprotein (Rhbg)、Rhcg1和Rhcg2的mRNA在海水馴養後表現量下降,NHE2則是表現量上升。然而,在高銨海水馴養後青鱂魚鰓上的NHE3、Rhbg、Rhcg1和Rhcg2的mRNA表現量皆上升。這些發現證實海水型離子細胞同時具有排酸以及排氨的能力,藉由離子細胞的NHE和Rh蛋白來參與酸促進氨排放的排氨機制。 在第二章將利用電生理技術測量海水青鱂魚仔魚體表離子細胞的氫和氯離子排放量。在NHE、Carbonic anhydrase (CA)、anion exchanger (AE)蛋白的抑制劑處理後發現離子細胞的排氫和排氯皆明顯下降。在短期CO2馴養後會同時刺激離子細胞酸和氯的排放量。透過原位雜交反應和化學免疫染色的方式定位CA2和AE1皆表現在同一型海水離子細胞上。青鱂魚鰓上的Na+/K+/2Cl- cotransporter (NKCC1a)、CA2和AE1 的mRNA在海水馴養後皆上升。另外,在酸化的海水馴養後鰓上的AE1a和AE1b 的mRNA皆上升;而NKCC1a則是在鹼化的海水馴養後上升。這些結果解釋海水魚離子細胞的排酸機制並重新定義過去所建立的排氯機制。 在第三章我們將近一步的探討NHE2蛋白在海水型離子細胞的酸鹼平衡和排鹽功能。在抑制NHE2蛋白質表現後離子細胞的排酸和排氯皆明顯的下降,說明NHE2參與了海水型離子細胞的酸鹼平衡和排鹽功能。綜合這些結果,我們解釋海水型離子細胞的排氨、排鹽以及酸鹼平衡機制並且發現這些機制彼此間的是有關聯性的。Item 奈米金屬顆粒對廣鹽性青鱂魚離子細胞,毛細胞以及行為的毒性(2019) 傅至偉; Fu, Chih-Wei含有奈米顆粒產品的廣泛使用,隨之產生的毒性也越受到關注,目前研究指出奈米顆粒進到環境中可能對生物造成危害。然而奈米顆粒在海水環境中對魚類的行為與生理功能的影響仍未被研究的很透徹。在本實驗中利用淡水跟海水馴養的青鱂魚(Oryzias latipes)仔魚進行奈米銀與奈米銅顆粒的毒性實驗,將馴養7天剛孵出來的仔魚浸泡在含有奈米顆粒 (0.1, 1, 10 ppm) 的水中四小時,然後分析仔魚的活動力、刺激游泳反應、側線毛細胞數目、離子細胞數目以及皮膚排酸量。在淡水組的實驗中發現奈米銀顆粒處理後,仔魚活動力顯著下降,毛細胞數目、離子細胞數目和皮膚排酸量也顯著下降,最大游泳速度與最大游泳加速度並沒有受到影響。奈米銅顆粒溶液浸泡後發現仔魚的毛細胞數目、離子細胞數目和皮膚排酸量顯著下降,游泳距離、最大游泳速度以及最大游泳加速度則發現在低濃度上升,高濃度下降的趨勢。在海水組的實驗發現,奈米銀顆粒處理後只有發現仔魚活動力以及排酸量下降。奈米銅顆粒處理後只有活動力下降而其他實驗則無統計差異。結果顯示在海水環境中奈米顆粒毒性較在淡水環境低。此外硝酸銀與硫酸銅進行毒性試驗也出現類似的毒性反應。Item 金屬奈米顆粒對斑馬魚仔魚的影響(2017) 方鏡雅; Fang, Ching-Ya近年來奈米科技日新月異,也成為炙手可熱的科技產業之一,但是我們也需要關注金屬奈米顆粒可能對環境及生物造成的風險,在過去的研究中大多是探討金屬奈米顆粒對動物的死亡率、胚胎發育、細胞染色觀察、行為測量、基因表現,較少有更深入的發現。本篇研究目的是利用斑馬魚仔魚為動物模式,探討奈米銅(CuNP)、奈米銀(AgNP)與傳統的金屬離子硫酸銅(CuSO4)、硝酸銀(AgNO3)對仔魚的傷害。主要利用掃描式離子選擇電極技術(SIET)測量細胞的功能,結果顯示毛細胞浸泡在CuSO4、CuNP、AgNO3和AgNP 4小時後,鈣離子流入量下降,而離子細胞的氫離子梯度顯著下降,這說明了毛細胞與離子細胞功能明顯下降。利用FM1-43 及Rhodamine123標定側線毛細胞、離子細胞,結果顯示仔魚浸泡CuSO4、CuNP、AgNO3和AgNP 4小時後,毛細胞數目顯著下降,而離子細胞密度顯著減少。利用qPCR定量分析離子細胞上參與排酸蛋白的基因,結果顯示仔魚浸泡CuSO4、CuNP、AgNO3、AgNP 24小時後,nhe3b的mRNA表現量有顯著提升,表示仔魚可能對Na+吸收與H+排出受到影響,所以SIET測量到H+排出減少可能與此有關。利用CellROX標定產生reactive oxygen species (ROS)的離子細胞,結果顯示離子細胞在CuSO4 (0.5 ppm)、CuNP ( ppm)、AgNO3 (50 ppm)和AgNP (0.1 ppm) ROS有顯著上升,這可能是造成細胞損傷的原因之一。仔魚浸泡在CuSO4、CuNP、AgNO3及AgNP 4小時後,逆流行為顯著下降,最大游泳速度結果顯示只有CuSO4 (0.5 ppm)、CuNP (0.5 ppm)組有顯著下降,在活動力的測量結果發現仔魚只有在AgNO3 (50 ppm) 及AgNP (1.5 ppm)有顯著降低。綜合以上結果證實CuNP、AgNP除了會造成行為異常、細胞產生ROS及基因表現量改變害之外,另外也發現細胞的功能有受到影響,然而金屬奈米顆粒造成細胞的傷害機制仍需進一步研究。