理學院
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3
學院概況
理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。
特色理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。
理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。
在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。
在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。
Browse
2 results
Search Results
Item 探討高中生在社會性科學議題決策課程中非形式推理能力、小組協作調整行為與決策方法的關係(2018) 張文馨; Zhang, Wen-Xin本研究欲探討融入論證活動的社會性科學議題(SSI)決策課程對學生非形式推理、決策方法的使用及小組協作學習中的調整行為之間的關連。研究使用混合性研究,以質性資料為主,輔以單組前後測設計。研究對象以便利取樣,來自新北與高雄2所學校共3班多元選修課的學生,參與研究的學生有共38人。學生以2人一組,小組協作的形式進行SSI決策課程。研究收集的資料有學生的非形式推理能力測驗前、後測,小組學習單、小組討論與操作電腦之側錄影片。結果顯示,本研究發展的SSI決策課程能有效提升學生非形式推理能力(t = 3.73,p< .001),課程中,學習單的分析結果顯示小組在SSI決策課程中,大多能夠考量至少2-3個與議題相關的證據,並指出SSI中的兩難之處,也多能利用這些證據為自己的決策提出至少2個具辯護性的理由,但在提出反論點上通常缺乏辯護性理由、也未能思考本身決策的限制條件或重申反論點的負面證據;在決策方法的使用上,課程前、後學生使用的決策方法沒有顯著改變,大多數學生傾向於使用非補償性方法(前測:25人、後測:23人),課程中小組使用的決策方法與前後測中的決策方法都沒有顯著相關,顯示學生在SSI中的由個人進行決策或集體決策進行決策時的決策方法可能不同;此外,比較高(HIRG)、低非形式(LIRG)推理能力小組在協作學習過程中的決策方法與調整行為差異,其結果顯示,HIRG,只使用補償性(4組)與非補償性方法(3組),LIRG則只使用非補償性(2組)與無策略(3組);另外,在小組協作調整的比較上, LIRG大多時候是在單純執行認知任務(49%),HIRG則有較多的監控與評鑑行為40%。HIRG展現較多比例的社會共享調整行為(73.19%),LIRG僅有55.06%的社會性共享調整行為。依據遲滯序列分析的結果顯示,相較於LIRG,HIRG重視對任務需求的辨識,且在辨識任務需求之後能訂定較具體的任務目標與計畫,並較能主動在監控與評鑑後調整小組內的認知行為。上述結果顯示,融入論證活動的SSI決策課程能有效提升學生的非形式推理能力,若學生在小組學習過程中正確釐清任務需求,能協助小組訂定較具體的目標與策略,應該能促使其主動監控與調整組內的認知表現,並展現較高的非形式推理能力且使用具體的方法進行決策。 關鍵字:社會性科學議題、決策、非形式推理、調整行為、小組協作調整行為Item 高中生對於核能發電爭議之非制式推理思考-兼探網路探究活動之影響(2007) 吳穎沺; Ying-Tien WuAt the 21st century, preparing learners’ ability to deal with socio-scientific issues has been recognized as an important goal for science education. In science education, previous studies regarding learners’ informal reasoning on socio-scientific issues were mainly conducted with qualitative analyses. With 68 tenth graders in Taiwan, this study initially attempted to explore students’ informal reasoning on a socio-scientific issue both qualitatively and quantitatively. In this study, “nuclear power usage” was used as the socio-scientific issue for the participants to reason. The conduct of this study was divided into two phases: the “informal reasoning exploration phase”, mainly examining the relationship between students’ informal reasoning and scientific epistemological beliefs (SEBs) as well as their cognitive structures, and the “on-line searching task phase”, mainly focusing on the effects of different on-line searching activities on students’ informal reasoning. In the first phase, the students’ SEBs were accessed by a questionnaire; the data regarding the students’ cognitive structures were collected by tape-recorded interviews; and, an open-ended questionnaire was utilized to gather the data about the participants’ informal reasoning on nuclear power usage. The findings derived from the first phase imply that learners’ informal reasoning on a socio-scientific issue is, in general, correlated with their SEBs as well as their cognitive structures regarding this issue. Moreover, it was also found that the students’ usage of the “comparing” information processing mode was the best predictor for their informal reasoning quality, while their beliefs about the nature of science knowing was the second best predictor for their informal reasoning quality. Besides, the importance of the richness of students’ cognitive structures on their informal reasoning regarding a socio-scientific issue was also highlighted. In the second phase, by using a quasi-experimental research approach, thirty-three students were assigned to a “guided searching task group”, while thirty-five students were assigned to an “unguided searching task group”. Both the students in the two groups were asked to search relevant information regarding nuclear power usage on the Internet and integrate what they had searched into a report during the period of two classes (100 minutes). However, the students in the un-guided searching task group were asked to search freely, while those in the guided searching task group were provided with a searching guideline. The results of second phase showed that the two groups of students did not show any significant difference on their searching outcomes (p>0.05), but it revealed significant effects of guided on-line searching task on students’ cognitive structure outcomes as well as on their supportive argument construction (p<0.05). However, the guided on-line searching task in this study did not significantly facilitate students’ reasoning quality. Besides, the interaction between students’ SEBs and instructional conditions on students’ searching outcomes as well as on their cognitive structure outcomes was found; also, the interaction between students’ information commitments and instructional condition on students’ cognitive structure outcomes as well as on their informal reasoning outcomes was revealed. It suggests that, when trying to improve students’ informal reasoning ability in Internet-based learning environments, science instructors should pay more attention to the role of learners’ SEBs and the information commitments in their learning outcomes. In sum, the findings in current study did provide more insights into the nature of students’ informal reasoning on a socio-scientific issue, and also showed some initial evidences on the usefulness of on-line searching activities on learners’ informal reasoning on this issue.